|
Kirpichnikov, D. V., Sieber, H., Molina Bueno, L., Crivelli, P., & Kirsanov, M. M. (2021). Probing hidden sectors with a muon beam: Total and differential cross sections for vector boson production in muon bremsstrahlung. Phys. Rev. D, 104(7), 076012–13pp.
Abstract: Vector bosons, such as dark photon A' or Z', can couple to muons and be produced in the bremsstrahlung reaction mu(-) + N -> mu(-) + N + A'(Z'). Their possible subsequent invisible decay can be detected in fixed target experiments through missing energy/momentum signature. In such experiments, not only is the energy transfer to A'(Z') important but also the recoil muon angle psi μ0. In this paper, we derive the total and the double differential cross sections involved in this process using the phase space Weizsacker-Williams and improved Weizsacker-Williams approximations, as well as using exact-tree-level calculations. As an example, we compare the derived cross sections and resulting signal yields in the NA64 μexperiment that uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We also discuss its impact on the NA64 μexpected sensitivity to explore the (g – 2)(mu) anomaly favored region with a Z' boson considering 10(12) muons accumulated on target.
|
|
|
Mongillo, M., Abdullahi, A., Banto Oberhauser, B., Crivelli, P., Hostert, M., Massaro, D., et al. (2023). Constraining light thermal inelastic dark matter with NA64. Eur. Phys. J. C, 83(5), 391–14pp.
Abstract: A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon (g – 2) anomaly. By means of a more inclusive signal definition at the NA64 experiment, we place new constraints on iDM and i2DM using a missing energy technique. With a recast-based analysis, we contextualize the NA64 exclusion limits in parameter space and estimate the reach of the newly collected and expected future NA64 data. Our results motivate the development of an optimized search program for semi-visible particles, in which fixed target experiments like NA64 provide a powerful probe in the sub-GeV mass range.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2022). Search for a light Z' in the L-mu – L-tau scenario with the NA64-e experiment at CERN. Phys. Rev. D, 106(3), 032015–12pp.
Abstract: The extension of Standard Model made by inclusion of additional U(1) gauge L-mu – L-tau symmetry can explain the difference between the measured and the predicted value of the muon magnetic moment and solve the tension in B meson decays. This model predicts the existence of a new, light Z' vector boson, predominantly coupled to second and third generation leptons, whose interaction with electrons is due to a loop mechanism involving muons and taus. In this work, we present a rigorous evaluation of the upper limits in the Z' parameter space, obtained from the analysis of the data collected by the NA64-e experiment at CERN SPS, that performed a search for light dark matter with 2.84 x 10(11) electrons impinging with 100 GeV on an active thick target. The resulting limits touch the muon g – 2 preferred band for values of the Z' mass of order of 1 MeV, while the sensitivity projections for the future high-statistics NA64-e runs demonstrate the power of the electrons/positron beam approach in this theoretical scenario.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2022). Search for a New B-L Z' Gauge Boson with the NA64 Experiment at CERN. Phys. Rev. Lett., 129, 161801–6pp.
Abstract: A search for a new Z′ gauge boson associated with (un)broken B−L symmetry in the keV–GeV mass range is carried out for the first time using the missing-energy technique in the NA64 experiment at the CERN SPS. From the analysis of the data with 3.22×10^11 electrons on target collected during 2016–2021 runs, no signal events were found. This allows us to derive new constraints on the Z′−e coupling strength, which, for the mass range 0.3≲ mZ′≲ 100 MeV, are more stringent compared to those obtained from the neutrino-electron scattering data.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2021). Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS. Phys. Rev. D, 104(11), L111102–5pp.
Abstract: We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2021). Improved exclusion limit for light dark matter from e(+) e(-) annihilation in NA64. Phys. Rev. D, 104(9), L091701–7pp.
Abstract: The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A' were set by the NA64 experiment for the mass region m(A') less than or similar to 250 MeV, by analyzing data from the interaction of 2.84 x 10(11) 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A' production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e(+) beam efforts.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). First constraints on the Lμ – Lτ explanation of the muon g-2 anomaly from NA64-e at CERN. J. High Energy Phys., 07(7), 212–15pp.
Abstract: The inclusion of an additional U(1) gauge L-mu – L-tau symmetry would release the tension between the measured and the predicted value of the anomalous muon magnetic moment: this paradigm assumes the existence of a new, light Z ' vector boson, with dominant coupling to μand tau leptons and interacting with electrons via a loop mechanism. The L-mu – L-tau model can also explain the Dark Matter relic abundance, by assuming that the Z ' boson acts as a “portal” to a new Dark Sector of particles in Nature, not charged under known interactions. In this work we present the results of the Z ' search performed by the NA64-e experiment at CERN SPS, that collected similar to 9 x 10(11) 100 GeV electrons impinging on an active thick target. Despite the suppressed Z ' production yield with an electron beam, NA64-e provides the first accelerator-based results excluding the g – 2 preferred band of the Z ' parameter space in the 1 keV < m(Z ') less than or similar to 2 MeV range, in complementarity with the limits recently obtained by the NA64-mu experiment with a muon beam.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). Probing light dark matter with positron beams at NA64. Phys. Rev. D, 109(3), L031103–6pp.
Abstract: We present the results of a missing-energy search for light dark matter which has a new interaction with ordinary matter transmitted by a vector boson, called dark photon A'. For the first time, this search is performed with a positron beam by using the significantly enhanced production of A' in the resonant annihilation of positrons with atomic electrons of the target nuclei, followed by the invisible decay of A' into dark matter. No events were found in the signal region with (10.1 +/- 0.1) x 109 positrons on target with 100 GeV energy. This allowed us to set new exclusion limits that, relative to the collected statistics, prove the power of this experimental technique. This measurement is a crucial first step toward a future exploration program with positron beams, whose estimated sensitivity is here presented.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam. Phys. Rev. Lett., 132(21), 211803–7pp.
Abstract: We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum < 80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98 +/- 0.02) x 10(10) muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m(Z)'; g(Z)') parameter space of a new Z' (L-mu – L-tau) vector boson which could explain the muon (g – 2)(mu) anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.
|
|
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). Dark-Sector Search via Pion-Produced η and η' Mesons Decaying Invisibly in the NA64h Detector. Phys. Rev. Lett., 133(12), 121803–6pp.
Abstract: We present the first results from a proof-of-concept search for dark sectors via invisible decays of pseudoscalar eta and eta ' mesons in the NA64h experiment at the CERN SPS. Our novel technique uses the charge-exchange reaction of 50 GeV pi- on nuclei of an active target as the source of neutral mesons. The eta,eta'-> invisible events would exhibit themselves via a striking signature-the complete disappearance of the incoming beam energy in the detector. No evidence for such events has been found with 2.9x109 pions on target accumulated during one day of data taking. This allows us to set a stringent limit on the branching ratio Br(eta'-> invisible) < 2.1 x 10(-4) improving the current bound by a factor of similar or equal to 3. We also set a limit on Br(eta -> invisible) < 1.1 x 10(-4) comparable with the existing one. These results demonstrate the great potential of our approach and provide clear guidance on how to enhance and extend the sensitivity for dark sector physics from future searches for invisible neutral meson decays.
|
|