DUNE Collaboration(Abud, A. A. et al), Amedo, P., Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., et al. (2023). Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector. Phys. Rev. D, 107(9), 092012–22pp.
Abstract: Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment. Phys. Rev. D, 105(7), 072006–32pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum., 17(1), P01005–111pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Keywords: Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC. Eur. Phys. J. C, 82(7), 618–29pp.
Abstract: DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network. Eur. Phys. J. C, 82(10), 903–19pp.
Abstract: Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
|
Kirpichnikov, D. V., Sieber, H., Molina Bueno, L., Crivelli, P., & Kirsanov, M. M. (2021). Probing hidden sectors with a muon beam: Total and differential cross sections for vector boson production in muon bremsstrahlung. Phys. Rev. D, 104(7), 076012–13pp.
Abstract: Vector bosons, such as dark photon A' or Z', can couple to muons and be produced in the bremsstrahlung reaction mu(-) + N -> mu(-) + N + A'(Z'). Their possible subsequent invisible decay can be detected in fixed target experiments through missing energy/momentum signature. In such experiments, not only is the energy transfer to A'(Z') important but also the recoil muon angle psi μ0. In this paper, we derive the total and the double differential cross sections involved in this process using the phase space Weizsacker-Williams and improved Weizsacker-Williams approximations, as well as using exact-tree-level calculations. As an example, we compare the derived cross sections and resulting signal yields in the NA64 μexperiment that uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We also discuss its impact on the NA64 μexpected sensitivity to explore the (g – 2)(mu) anomaly favored region with a Z' boson considering 10(12) muons accumulated on target.
|
Mongillo, M., Abdullahi, A., Banto Oberhauser, B., Crivelli, P., Hostert, M., Massaro, D., et al. (2023). Constraining light thermal inelastic dark matter with NA64. Eur. Phys. J. C, 83(5), 391–14pp.
Abstract: A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon (g – 2) anomaly. By means of a more inclusive signal definition at the NA64 experiment, we place new constraints on iDM and i2DM using a missing energy technique. With a recast-based analysis, we contextualize the NA64 exclusion limits in parameter space and estimate the reach of the newly collected and expected future NA64 data. Our results motivate the development of an optimized search program for semi-visible particles, in which fixed target experiments like NA64 provide a powerful probe in the sub-GeV mass range.
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2022). Search for a light Z' in the L-mu – L-tau scenario with the NA64-e experiment at CERN. Phys. Rev. D, 106(3), 032015–12pp.
Abstract: The extension of Standard Model made by inclusion of additional U(1) gauge L-mu – L-tau symmetry can explain the difference between the measured and the predicted value of the muon magnetic moment and solve the tension in B meson decays. This model predicts the existence of a new, light Z' vector boson, predominantly coupled to second and third generation leptons, whose interaction with electrons is due to a loop mechanism involving muons and taus. In this work, we present a rigorous evaluation of the upper limits in the Z' parameter space, obtained from the analysis of the data collected by the NA64-e experiment at CERN SPS, that performed a search for light dark matter with 2.84 x 10(11) electrons impinging with 100 GeV on an active thick target. The resulting limits touch the muon g – 2 preferred band for values of the Z' mass of order of 1 MeV, while the sensitivity projections for the future high-statistics NA64-e runs demonstrate the power of the electrons/positron beam approach in this theoretical scenario.
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2022). Search for a New B-L Z' Gauge Boson with the NA64 Experiment at CERN. Phys. Rev. Lett., 129, 161801–6pp.
Abstract: A search for a new Z′ gauge boson associated with (un)broken B−L symmetry in the keV–GeV mass range is carried out for the first time using the missing-energy technique in the NA64 experiment at the CERN SPS. From the analysis of the data with 3.22×10^11 electrons on target collected during 2016–2021 runs, no signal events were found. This allows us to derive new constraints on the Z′−e coupling strength, which, for the mass range 0.3≲ mZ′≲ 100 MeV, are more stringent compared to those obtained from the neutrino-electron scattering data.
|
NA64 Collaboration(Andreev, Y. M. et al), & Molina Bueno, L. (2021). Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS. Phys. Rev. D, 104(11), L111102–5pp.
Abstract: We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
|