Li, H. P., Zhang, G. J., Liang, W. H., & Oset, E. (2023). Theoretical interpretation of the Ξ(1620) and Ξ(1690) resonances seen in Ξc+ → Ξ-π+π+ decay. Eur. Phys. J. C, 83(10), 954–7pp.
Abstract: We study the Belle reaction Xi(+)(c) -> Xi(-)pi(+)pi(+) looking at the mass distribution of pi(+)Xi, where clear signals for the Xi(1620) and Xi(1690) resonances are seen. These two resonances are generated dynamically from the interaction in coupled channels of pi Xi, (K) over bar Lambda, (K) over bar Xi and eta Xi within the chiral unitary approach. Yet, the weak decay process at the quark level, together with the hadronization to produce pairs of mesons, does not produce the pi pi Xi final state. In order to produce this state one must make transitions from the (K) over bar Lambda, (K) over bar Xi and eta Xi components to pi Xi, and this interaction is what produces the resonances. So, the reaction offers a good test for the molecular picture of these resonances. Adding the contribution of the Xi*(1530) and some background we are able to get a good reproduction of the mass distribution showing the signatures of the two resonances as found in the experiment.
|
Li, J. T., Lin, J. X., Zhang, G. J., Liang, W. H., & Oset, E. (2022). The (B)over-bar(s)(0) -> J/psi pi(0)eta decay and the a(0)(980)- f(0)(980) mixing. Chin. Phys. C, 46(8), 083108–6pp.
Abstract: We study the (B) over bar (0)(s) -> J/psi f(0)(980) and (B) over bar (0)(s) -> J/psi a(0)(980) reactions, and pay attention to the different sources of isospin violation and mixing of f(0)(980) and a(0)(980) resonances where these resonances are dynamically generated from meson-meson interactions. We fmd that the main cause of isospin violation is isospin breaking in the meson-meson transition T matrices, and the other source is that the loops involving kaons in the production mechanism do not cancel due to the different masses of charged and neutral kaons. We obtain a branching ratio for a(0)(980) production of the order of 5 x 10(-6) . Future experiments can address this problem, and the production rate and shape of the pi(0)eta mass distribution will definitely help to better understand the nature of scalar resonances.
|
Liang, W. H., Albaladejo, M., & Oset, E. (2013). Searching for a hidden charm h(1) state in the X(4660) -> eta h(1) and X(4660) -> eta D*(D)over-bar* decays. Phys. Rev. D, 88(7), 074027–7pp.
Abstract: We explore the possibility of experimentally detecting a predicted h(1) inverted right perpendicular I-G(J(PC)) = 0(-)(1(+-))inverted left perpendicular state of hidden charm made out from the D*(D) over bar* interaction. The method consists in measuring the decay of X(4660) into eta D*(D) over bar* and determining the binding energy with respect to the D*(D) over bar* threshold from the shape of the D*(D) over bar* invariant mass distribution. A complementary method consists in looking at the inclusive X(4660) -> eta X decay and searching for a peak in the X invariant mass distribution. We make calculations to determine the partial decay width of X(4660) -> eta h(1) from the measured X(4660) -> eta D*(D) over bar* distribution. This estimation should serve in an experiment to foresee the possibility of detecting the h(1) state on top of the background of inclusive events.
|
Liang, W. H., Ban, T., & Oset, E. (2024). B0 → K(*)0X, B- K(*) -X, Bs-η(η1;φ)X from the X(3872) molecular perspective. Phys. Rev. D, 109(5), 054030–9pp.
Abstract: We study the decays B over bar 0 – over bar K0X, B- – K-X, B over bar 0s – eta(eta 1)X, B over bar 0 – over bar K*0X, B- – K*-X, B over bar 0s – phi X, with X equivalent to X(3872), from the perspective of the X(3872) being a molecular state made from the interaction of the D*+D-; D*0 over bar D0, and c:c: components. We consider both the external and internal emission decay mechanisms and find an explanation for the over bar K0X and K-X production rates, based on the mass difference of the charged and neutral D*D over bar components. We also find that the internal and external emission mechanisms add constructively in the B over bar 0 – over bar K0X, B- – K-X reactions, while they add destructively in the case of widths of the present measurements and allows us to make predictions for the unmeasured modes of B over bar 0s – eta(eta 1)X(3872) and B- – K*-X(3872). The future measurement of these decay modes will help us get a better perspective on the nature of the X(3872) and the mechanisms present in production reactions of that state. B over bar 0 – over bar K*0X, B- – K*-X reactions. This feature explains the decay
|
Liang, W. H., Bayar, M., & Oset, E. (2017). Lambda(b) -> pi(-)(D-S(-)) Lambda(C)(2595), pi(-)(D-S(-)) Lambda(C)(2625) decays and DN, D*N molecular components. Eur. Phys. J. C, 77(1), 39–9pp.
Abstract: From the perspective that Lambda(C)(2595) and Lambda(C)(2625) are dynamically generated resonances from the DN, D*N interaction and coupled channels, we have evaluated the rates for Lambda(b) -> pi(-)Lambda(C)(2595) and Lambda(b) -> pi(-)Lambda(C)(2625) up to a global unknown factor that allows us to calculate the ratio of rates and compare with experiment, where good agreement is found. Similarly, we can also make predictions for the ratio of rates of the, yet unknown, decays of Lambda(b) -> D-s(-)Lambda(C)(2595) and Lambda(b) -> D-s(-)Lambda(c)(2625) and make estimates for their individual branching fractions.
|
Liang, W. H., Chen, H. X., Oset, E., & Wang, E. (2019). Triangle singularity in the J/psi -> K+K- f(0)(980)(a(0)(980)) decays. Eur. Phys. J. C, 79(5), 411–11pp.
Abstract: We study the J/psi -> K+K- f(0)(980)(a(0)(980)) reaction and find that the mechanism to produce this decay develops a triangle singularity around M-inv(K- f(0)/K- a(0)) approximate to 1515 MeV. The differential width d Gamma/dM(inv)(K- f(0)/K- a(0)) shows a rapid growth around the invariant mass being 1515 MeV as a consequence of the triangle singularity of this mechanism, which is directly tied to the nature of the f(0)(980) and a(0)(980) as dynamically generated resonances from the interaction of pseudoscalar mesons. The branching ratios obtained for the J/psi -> K+K- f(0)(980)(a(0)(980)) decays are of the order of 10(-5), accessible in present facilities, and we argue that their observation should provide relevant information concerning the nature of the low-lying scalar mesons.
|
Liang, W. H., Dias, J. M., Debastiani, V. R., & Oset, E. (2018). Molecular Omega(b) states. Nucl. Phys. B, 930, 524–532.
Abstract: Motivated by the recent finding of five Omega(c) states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of Omega(c), we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several Omega(b) states: two states with masses 6405 MeV and 6465 MeV for J(P) = 1/2(-) ; two more states with masses 6427 MeV and 6665 MeV for 3/4(-) ; and three states between 6500 and 6820 MeV, degenerate with J(P) = 1/2(-), 3/4(-), stemming from the interaction of vector-baryon in the beauty sector.
|
Liang, W. H., Ikeno, N., & Oset, E. (2020). Upsilon(nl) decay into B(*) (B)over-bar(*). Phys. Lett. B, 803, 135340–6pp.
Abstract: We have evaluated the decay modes of the Upsilon(4s), Upsilon(3d), Upsilon(5s), Upsilon(6s) states into B (B) over bar, B (B) over bar* + c.c., B* (B) over bar*, B-s(B) over bar (s), B-s(B) over bar (s)* + c.c., B-s* (B) over bar (s)* using the P-3(0) model to hadronize the bb vector seed, fitting some parameters to the data. We observe that the Upsilon(4s) state has an abnormally large amount of mesonmeson components in the wave function, while the other states are largely b (b) over bar. We predict branching ratios for the different decay channels which can be contrasted with experiment for the case of the Upsilon(5s) state. While globally the agreement is fair, we call the attention to some disagreement that could be a warning for the existence of more elaborate components in the state.
|
Liang, W. H., Molina, R., & Oset, E. (2024). Ωc→π+(π0, η)πΞ*, π+(π0, η)K¯Σ* reactions and the two Ξ(1820) states. Phys. Rev. D, 110(3), 036005–9pp.
Abstract: We have studied the Omega c-* pi+(pi 0, + ( pi 0 , eta)pi Xi ) pi Xi and Omega c-* pi+(pi 0, + ( pi 0 , eta ) K Sigma decays, where the final pi Xi Xi or K Sigma Sigma comes from the decay of two resonances around the nominal Xi ( 1820 ) , which are generated from the interaction of coupled channels made of a pseudoscalar and a baryon of the decuplet. The pi Xi Xi mass distributions obtained in the six different reactions studied are quite different, and we single out four of them, which are free of a tree level contribution, showing more clearly the effect of the resonances. The lower mass resonance is clearly seen as a sharp peak, but the higher mass resonance manifests itself through an interference with the lower one that leads to a dip in the mass distribution around 1850 MeV. Such a feature is similar to the dip observed in the S- wave pi pi cross section around the 980 MeV coming from the interference of the f 0 ( 500 ) and f 0 ( 980 ) resonances. Its observation in coming upgrades of present facilities will shed light on the existence of these two resonances and their nature. On the other hand, when the Omega c-* pi+(pi 0, + ( pi 0 , eta ) K Sigma reactions are studied, both peaks are observed.
|
Liang, W. H., Molina, R., & Oset, E. (2010). Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances. Eur. Phys. J. A, 44(3), 479–486.
Abstract: We determine the radiative decay amplitudes for the decay into D* and (D) over bar gamma, or (D) over bar gamma(s)* and s. of some of the charmonium- like states classified as X, Y, Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the (D) over bar gamma or (D) over bar (s)gamma. invariant mass show a peculiar behavior as a consequence of the D* (D) over bar gamma* nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.
|