|
Dombos, A. C. et al, & Algora, A. (2021). Total absorption spectroscopy of the beta decay of Zr-101,102 and Tc-109. Phys. Rev. C, 103(2), 025810–20pp.
Abstract: The beta decay of Zr-101,Zr-102 and Tc-109 was studied using the technique of total absorption spectroscopy. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) (SuN) detector in the first-ever application of total absorption spectroscopy with a fast beam produced via projectile fragmentation. The beta-decay feeding intensity and Gamow-Teller transition strength distributions were extracted for these three decays. The extracted distributions were compared to three different quasiparticle random-phase approximation (QRPA) models based on different mean-field potentials. A comparison with calculations from one of the QRPA models was performed to learn about the ground-state shape of the parent nucleus. For Zr-101 and Zr-102, calculations assuming a pure shape configuration (oblate or prolate) were not able to reproduce the extracted distributions. These results may indicate that some type of mixture between oblate and prolate shapes is necessary to reproduce the extracted distributions. For Tc-109, a comparison of the extracted distributions with QRPA calculations suggests a dominant oblate configuration. The other two QRPA models are commonly used to provide beta-decay properties in r-process network calculations. This work shows the importance of making comparisons between the experimental and theoretical beta-decay distributions, rather than just half-lives and beta-delayed neutron emission probabilities, as close to the r-process path as possible.
|
|
|
Dombos, A. C., Spyrou, A., Naqvi, F., Quinn, S. J., Liddick, S. N., Algora, A., et al. (2019). beta-decay half-lives of neutron-rich nuclides in the A=100-110 mass region. Phys. Rev. C, 99(1), 015802–8pp.
Abstract: beta-decay half-lives of neutron-rich nuclides in the A = 100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(T1) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement.
|
|
|
Gombas, J., DeYoung, P. A., Spyrou, A., Dombos, A. C., Algora, A., Baumann, T., et al. (2021). beta-decay feeding intensity distributions for Nb-103,Nb-104m. Phys. Rev. C, 103(3), 035803–8pp.
Abstract: The beta decays of Nb-103,Nb-104m were studied with the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. The beta-decay feeding intensity distribution I-beta(E) for each isotope was extracted by measuring gamma rays in coincidence with an emitted electron. The I-beta(E) was extracted via the total absorption spectroscopy technique. The I-beta(E) for each nucleus was compared to predictions made by the quasiparticle random-phase approximation (QRPA) model which is commonly used to calculate beta-decay properties for astrophysical applications. The main goal was to provide experimental data for neutron-rich nuclei, relevant to the astrophysical r process. In addition, the extracted beta-decay feeding intensity distributions can lead to a better understanding of nuclear structure in a region of rapid structure changes around A = 100. Finally, experimental data for Nb-104m are also of interest to antineutrino studies of nuclear reactors.
|
|
|
Liddick, S. N., Spyrou, A., Crider, B. P., Naqvi, F., Larsen, A. C., Guttormsen, M., et al. (2016). Experimental Neutron Capture Rate Constraint Far from Stability. Phys. Rev. Lett., 116(24), 242502–6pp.
Abstract: Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on Ni-69, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.
|
|