TY - JOUR AU - DUNE Collaboration (Abud, A. A. et al AU - Antonova, M. AU - Barenboim, G. AU - Cervera-Villanueva, A. AU - De Romeri, V. AU - Fernandez Menendez, P. AU - Garcia-Peris, M. A. AU - Martin-Albo, J. AU - Martinez-Mirave, P. AU - Mena, O. AU - Molina Bueno, L. AU - Novella, P. AU - Pompa, F. AU - Sorel, M. AU - Ternes, C. A. AU - Tortola, M. AU - Valle, J. W. F. PY - 2022 DA - 2022// TI - Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC T2 - Eur. Phys. J. C JO - European Physical Journal C SP - 618 - 29pp VL - 82 IS - 7 PB - Springer AB - DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. SN - 1434-6044 UR - https://arxiv.org/abs/2203.16134 UR - https://doi.org/10.1140/epjc/s10052-022-10549-w DO - 10.1140/epjc/s10052-022-10549-w LA - English N1 - WOS:000826161300003 ID - DUNECollaborationAbud_etal2022 ER -