TY - JOUR AU - Johannesson, G. AU - Ruiz de Austri, R. AU - Vincent, A. C. AU - Moskalenko, I. V. AU - Orlando, E. AU - Porter, T. A. AU - Strong, A. W. AU - Trotta, R. AU - Feroz, F. AU - Graff, P. AU - Hobson, M. P. PY - 2016 DA - 2016// TI - Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion T2 - Astrophys. J. JO - Astrophysical Journal SP - 16 EP - 19pp VL - 824 IS - 1 PB - Iop Publishing Ltd KW - astroparticle physics KW - cosmic rays KW - diffusion KW - Galaxy: general KW - ISM: general KW - methods: statistical AB - We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update. SN - 0004-637x UR - http://arxiv.org/abs/1602.02243 UR - https://doi.org/10.3847/0004-637X/824/1/16 DO - 10.3847/0004-637X/824/1/16 LA - English N1 - WOS:000377937300016 ID - Johannesson_etal2016 ER -