toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Observation of Long-Range Elliptic Azimuthal Anisotropies in root s=13 and 2.76 TeV pp Collisions with the ATLAS Detector Type Journal Article
  Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 116 Issue 17 Pages 172301 - 20pp  
  Keywords  
  Abstract ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Delta phi, and pseudorapidity, Delta eta, in root s = 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval vertical bar eta vertical bar < 2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Delta phi similar to 0 that extends over a wide range of Delta eta, which has been referred to as the “ridge.” Per-trigger-particle yields, Y(Delta phi) are measured over 2 < vertical bar Delta eta vertical bar < 5. For both collision energies, the Y(Delta phi) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 2 phi reconstructed tracks, and a constant combinatoric contribution modulated by cos (2 Delta phi). The fitted Fourier coefficient, nu(2,2), exhibits factorization, suggesting that the ridge results from per-event cos (2 phi) modulation of the single-particle distribution with Fourier coefficients nu(2). The nu(2) values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p(T) dependence similar to that measured in p + Pb and Pb + Pb collisions. The nu(2) values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p + Pb collisions, and that the dynamics responsible for the ridge has no strong root s dependence.  
  Address [Aloisio, A.; Jackson, P.; Lee, L.; Petridis, A.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374964400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2682  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva