|   | 
Details
   web
Records
Author Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.
Title PArthENoPE reloaded Type Journal Article
Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 233 Issue Pages 237-242
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems
Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000444667100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3729
Permanent link to this record
 

 
Author Gariazzo, S.; de Salas, P.F.; Pisanti, O.; Consiglio, R.
Title PArthENoPE revolutions Type Journal Article
Year 2022 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 271 Issue Pages 108205 - 13pp
Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics
Abstract This paper presents the main features of a new and updated version of the program PArthENoPE, which the community has been using for many years for computing the abundances of light elements produced during Big Bang Nucleosynthesis. This is the third release of the PArthENoPE code, after the 2008 and the 2018 ones, and will be distributed from the code's website, http://parthenope.na.infn.it. Apart from minor changes, the main improvements in this new version include a revisited implementation of the nuclear rates for the most important reactions of deuterium destruction, H-2(p,gamma) He-3, H-2(d, n)He-3 and H-2(d, p)H-3, and a re-designed GUI, which extends the functionality of the previous one. The new GUI, in particular, supersedes the previous tools for running over grids of parameters with a better management of parallel runs, and it offers a brand-new set of functions for plotting the results. Program summary Program title: PArthENoPE 3.0 CPC Library link to program files: https://doi.org/10.17632/wygr7d8yt9.2 Developer's repository link: http://parthenope.na.infn.it Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems, Python GUI for running and plotting Journal reference of previous version: Comput. Phys. Commun. 233 (2018) 237-242 Does the new version supersede the previous version?: Yes Reasons for the new version: Update of the physics and improvements in the GUI Summary of revisions: Update of the physics implemented in the Fortran code and improvements in the GUI functionalities, in particular new plotting functions.
Address [Gariazzo, S.] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: pisanti@na.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000720461800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5027
Permanent link to this record
 

 
Author Felipe, R.G.; Joaquim, F.R.; Serodio, H.
Title Flavored CP asymmetries for type II seesaw leptogenesis Type Journal Article
Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 28 Issue 31 Pages 1350165 - 13pp
Keywords Leptogenesis; neutrino physics; seesaw mechanism
Abstract A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.
Address [Gonzalez Felipe, R.; Joaquim, F. R.] Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: ricardo.felipe@ist.utl.pt;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000329057000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1764
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Lazo, A.; Manczak, J.; Real, D.; Sanchez-Losa, A.; Saina, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J.
Title The ANTARES detector: Two decades of neutrino searches in the Mediterranean Sea Type Journal Article
Year 2025 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 1121 Issue Pages 1-46
Keywords Neutrino astrophysics; Neutrino physics; Multimessenger astrophysics; Neutrino detectors
Abstract Interest for studying cosmic neutrinos using deep-sea detectors has increased after the discovery of a diffuse flux of cosmic neutrinos by the IceCube collaboration and the possibility of wider multi-messenger studies with the observations of gravitational waves. The ANTARES detector was the first neutrino telescope in seawater, operating successfully in the Mediterranean Sea for more than a decade and a half. All challenges related to the operation in the deep sea were accurately addressed by the collaboration. Deployment and connection operations became smoother over time; data taking and constant re-calibration of the detector due to the variable environmental conditions were fully automated. A wealth of results on the subject of astroparticle physics, particle physics and multi-messenger astronomy have been obtained, despite the relative modest size of the detector, paving the way to a new generation of larger undersea detectors. This review summarizes the efforts by the ANTARES collaboration that made the possibility to operate neutrino telescopes in seawater a reality and the results obtained in this endeavor.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, IPHC, F-67000 Strasbourg, France, Email: maurizio.spurio@unibo.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:001493688500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6690
Permanent link to this record
 

 
Author Barenboim, G.; Denton, P.B.; Parke, S.J.; Ternes, C.A.
Title Neutrino oscillation probabilities through the looking glass Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 791 Issue Pages 351-360
Keywords Neutrino physics; Neutrino oscillations in matter
Abstract In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000462321800051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3958
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Letter of intent for KM3NeT 2.0 Type Journal Article
Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 8 Pages 084001 - 130pp
Keywords neutrino astronomy; neutrino physics; deep sea neutrino telescope; neutrino mass hierarchy
Abstract The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, C Paranimf 1, E-46730 Gandia, Spain, Email: brunner@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000381686700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2773
Permanent link to this record
 

 
Author Acero, M.A. et al; Alvarez-Ruso, L.; Garcia-Soto, A.; Nieves, J.; Zornoza, J.D.
Title White paper on light sterile neutrino searches and related phenomenology Type Journal Article
Year 2024 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 51 Issue 12 Pages 120501 - 214pp
Keywords neutrino physics; light sterile neutrino; experimental neutrino anomalies
Abstract This white paper provides a comprehensive review of our present understanding of experimental neutrino anomalies that remain unresolved, charting the progress achieved over the last decade at the experimental and phenomenological level, and sets the stage for future programmatic prospects in addressing those anomalies. It is purposed to serve as a guiding and motivational “encyclopedic” reference, with emphasis on needs and options for future exploration that may lead to the ultimate resolution of the anomalies. We see the main experimental, analysis, and theory-driven thrusts that will be essential to achieving this goal being: 1) Cover all anomaly sectors -- given the unresolved nature of all four canonical anomalies, it is imperative to support all pillars of a diverse experimental portfolio, source, reactor, decay-at-rest, decay-in-flight, and other methods/sources, to provide complementary probes of and increased precision for new physics explanations; 2) Pursue diverse signatures -- it is imperative that experiments make design and analysis choices that maximize sensitivity to as broad an array of these potential new physics signatures as possible; 3) Deepen theoretical engagement -- priority in the theory community should be placed on development of standard and beyond standard models relevant to all four short-baseline anomalies and the development of tools for efficient tests of these models with existing and future experimental datasets; 4) Openly share data -- Fluid communication between the experimental and theory communities will be required, which implies that both experimental data releases and theoretical calculations should be publicly available; and 5) Apply robust analysis techniques -- Appropriate statistical treatment is crucial to assess the compatibility of data sets within the context of any given model.
Address [Acero, M. A.] Univ Atlantico, Atlantico, Colombia, Email: alex.sousa@uc.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001376728800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6421
Permanent link to this record
 

 
Author Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W.
Title Systematic decomposition of the neutrinoless double beta decay operator Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 055 - 34pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or “exotics”, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay.
Address Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000317521200055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1416
Permanent link to this record
 

 
Author Marzocca, D.; Petcov, S.T.; Romanino, A.; Sevilla, M.C.
Title Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation
Abstract After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e – L μ- L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases it contains, that can provide the requisite corrections to U-nu so that theta(13), theta(23) and the solar neutrino mixing angle theta(12) have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U-e, “standard” and “inverse”, are considered. The results we obtain depend strongly on the type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta similar or equal to pi in the BM (or LC) case, H) delta congruent to 3 pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2 pi being excluded in the TBM case at more than 4 sigma.
Address [Marzocca, David; Petcov, S. T.; Romanino, Andrea] SISSA ISAS, I-34136 Trieste, Italy, Email: dmarzocc@sissa.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400073 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1556
Permanent link to this record
 

 
Author Agarwalla, S.K.; Prakash, S.; Sankar, S.U.
Title Resolving the octant of theta(23) with T2K and NOvA Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 131 - 24pp
Keywords Neutrino Physics; CP violation; Beyond Standard Model
Abstract Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) < 45 degrees) and the other in the higher octant (HO: theta(23) > 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) for which octant resolution is easy (challenging). However, for octant resolution the unfavorable delta(CP) values of the neutrino data are favorable for the anti-neutrino data and vice-verse. This is in contrast to the case of hierarchy determination. In this paper, we compute the combined sensitivity of T2K and NOvA to resolve the octant ambiguity. If sin(2)theta(23) – 0.41, then NOvA can rule out all the values of theta(23) in HO at 2 sigma C.L., irrespective of the hierarchy and delta(CP). Addition of T2K data improves the octant sensitivity. If T2K were to have equal neutrino and anti-neutrino runs of 2.5 years each, a 2 sigma resolution of the octant becomes possible provided sin(2) theta(23) <= 0.43 or >= 0.58 for any value of delta(CP).
Address [Agarwalla, Sanjib Kumar] Inst Phys, Sainik Sch Post, Bhubaneswar 751005, Orissa, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1570
Permanent link to this record