Records |
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Neutrino interaction classification with a convolutional neural network in the DUNE far detector |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
102 |
Issue |
9 |
Pages |
092003 - 20pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000587596500004 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4598 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Sanders, O.; Tortola, M.; Valle, J.W.F. |
Title |
Future CEvNS experiments as probes of lepton unitarity and light sterile neutrinos |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
102 |
Issue |
11 |
Pages |
113014 - 14pp |
Keywords |
|
Abstract |
We determine the sensitivities of short-baseline coherent elastic neutrino-nucleus scattering (CE nu NS) experiments using a pion decay at rest neutrino source as a probe for nonunitarity in the lepton sector, as expected in low-scale type-I seesaw schemes. We also identify the best configuration for probing light sterile neutrinos at future ton-scale liquid argon CE nu NS experiments, estimating the projected sensitivities on the sterile neutrino parameters. Possible experimental setups at the Spallation Neutron Source, Lujan facility and the European Spallation Source are discussed. Provided that systematic uncertainties remain under control, we find that CE nu NS experiments will be competitive with oscillation measurements in the long run. |
Address |
[Miranda, O. G.; Sanders, O.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000602268000005 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4664 |
Permanent link to this record |
|
|
|
Author |
Martinez-Mirave, P.; Molina Sedgwick, S.; Tortola, M. |
Title |
Nonstandard interactions from the future neutrino solar sector |
Type |
Journal Article |
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
105 |
Issue |
3 |
Pages |
035004 - 14pp |
Keywords |
|
Abstract |
The next-generation neutrino experiment JUNO will determine the solar oscillation parameters- sin(2) theta(12) and Delta m(21)(2)-with great accuracy, in addition to measuring sin(2)theta(13), Delta m(31)(2), and the mass ordering. In parallel, the continued study of solar neutrinos at Hyper-Kamiokande will provide complementary measurements in the solar sector. In this paper, we address the expected sensitivity to nonuniversal and flavor-changing nonstandard interactions (NSI) with d-type quarks from the combination of these two future neutrino experiments. We also show the robustness of their measurements of the solar parameters sin(2)theta(12) and Delta m(2)(1)(2) in the presence of NSI. We study the impact of the exact experimental configuration of the Hyper-Kamiokande detector, and conclude it is of little relevance in this scenario. Finally, we find that the LMA-D solution is expected to be present if no additional input from nonoscillation experiments is considered. |
Address |
[Martinez-Mirave, P.] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: pamarmi@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000751937800002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
no |
Call Number |
IFIC @ pastor @ |
Serial |
5109 |
Permanent link to this record |
|
|
|
Author |
Forero, D.V.; Giunti, C.; Ternes, C.A.; Tortola, M. |
Title |
Nonunitary neutrino mixing in short and long-baseline experiments |
Type |
Journal Article |
Year |
2021 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
104 |
Issue |
7 |
Pages |
075030 - 11pp |
Keywords |
|
Abstract |
Nonunitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino mass models. In these models, light neutrino mixing is described by a submatrix of the full lepton mixing matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by additional parameters, including new sources of CP violation. Here we perform a combined analysis of short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a significant deviation from unitary mixing, and the complementary data sets have been used to constrain the nonunitarity parameters. We have also found that the T2K and NOvA tension in the determination of the Dirac CP-phase is not alleviated in the context of nonunitary neutrino mixing. |
Address |
[Forero, D. V.] Univ Medellin, Carrera 87 N 30-65, Medellin, Colombia, Email: dvanegas@udem.edu.co; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000753716600006 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5121 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment |
Type |
Journal Article |
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
105 |
Issue |
7 |
Pages |
072006 - 32pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000809663000001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5260 |
Permanent link to this record |
|
|
|
Author |
Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. |
Title |
Nonunitarity of the lepton mixing matrix at the European Spallation Source |
Type |
Journal Article |
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
106 |
Issue |
7 |
Pages |
075016 - 16pp |
Keywords |
|
Abstract |
If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters. |
Address |
[Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000898616000007 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5440 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F. |
Title |
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector |
Type |
Journal Article |
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
107 |
Issue |
9 |
Pages |
092012 - 22pp |
Keywords |
|
Abstract |
Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001010953400003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5588 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. |
Title |
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment |
Type |
Journal Article |
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
107 |
Issue |
11 |
Pages |
112012 - 25pp |
Keywords |
|
Abstract |
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001063367400002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5669 |
Permanent link to this record |
|
|
|
Author |
Barenboim, G.; Martinez-Mirave, P.; Ternes, C.A.; Tortola, M. |
Title |
Neutrino CPT violation in the solar sector |
Type |
Journal Article |
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
108 |
Issue |
3 |
Pages |
035039 - 10pp |
Keywords |
|
Abstract |
In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed. |
Address |
[Barenboim, G.; Martinez-Mirave, P.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Carrer Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001065884700002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5692 |
Permanent link to this record |
|
|
|
Author |
Rossi, R.R.; Sanchez Garcia, G.; Tortola, M. |
Title |
Probing nuclear properties and neutrino physics with current and future CEνNS experiments |
Type |
Journal Article |
Year |
2024 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
109 |
Issue |
9 |
Pages |
095044 - 17pp |
Keywords |
|
Abstract |
The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study. |
Address |
[Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher  |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001238451900005 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6149 |
Permanent link to this record |