Records |
Author |
Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M. |
Title |
Neutrino masses and their ordering: global data, priors and models |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
03 |
Issue |
3 |
Pages |
011 - 22pp |
Keywords |
neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay |
Abstract |
We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions. |
Address |
[Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000445497200001 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3736 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. |
Title |
Constraining the invisible neutrino decay with KM3NeT-ORCA |
Type |
Journal Article |
Year |
2019 |
Publication |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
789 |
Issue |
|
Pages |
472-479 |
Keywords |
Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes |
Abstract |
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering. |
Address |
[de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000457165400063 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3902 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title |
Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering |
Type |
Journal Article |
Year |
2019 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
Volume |
07 |
Issue |
7 |
Pages |
103 - 23pp |
Keywords |
Beyond Standard Model; Neutrino Physics; CP violation; Solar and Atmospheric Neutrinos |
Abstract |
We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CE nu NS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensitivities on each component of the Majorana neutrino transition magnetic moment (TMM), vertical bar Lambda(i)vertical bar, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CE nu NS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CE nu NS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data. |
Address |
[Miranda, O. G.] Ctr Invest & Estudios Avanzados, IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000476512900004 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4087 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Sanchez Garcia, G.; Sanders, O.; Tortola, M.; Valle, J.W.F. |
Title |
Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
Volume |
05 |
Issue |
5 |
Pages |
130 - 17pp |
Keywords |
Beyond Standard Model; Neutrino Physics |
Abstract |
The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3 sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data. |
Address |
[Miranda, O. G.; Sanchez Garcia, G.; Sanders, O.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000538854400001 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4425 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title |
Probing new neutral gauge bosons with CE nu NS and neutrino-electron scattering |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
101 |
Issue |
7 |
Pages |
073005 - 13pp |
Keywords |
|
Abstract |
The potential for probing extra neutral gauge boson mediators (Z') from low-energy measurements is comprehensively explored. Our study mainly focuses on Z' mediators present in string-inspired E-6 models and left-right symmetry. We estimate the sensitivities of coherent-elastic neutrino-nucleus scattering (CE nu NS) and neutrino-electron scattering experiments. Our results indicate that such low-energy high-intensity measurements can provide a valuable probe, complementary to high-energy collider searches and electroweak precision measurements. |
Address |
[Miranda, O. G.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000527127700002 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4374 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. |
Title |
XENON1T signal from transition neutrino magnetic moments |
Type |
Journal Article |
Year |
2020 |
Publication |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
808 |
Issue |
|
Pages |
135685 - 5pp |
Keywords |
|
Abstract |
The recent puzzling results of the XENONIT collaboration at few keV electronic recoils could be due to the scattering of solar neutrinos endowed with finite Majorana transition magnetic moments (TMMs). Within such general formalism, we find that the observed excess in the XENONIT data agrees well with this interpretation. The required TMM strengths lie within the limits set by current experiments, such as Borexino, specially when one takes into account a possible tritium contamination. |
Address |
[Miranda, O. G.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000571769700059 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4541 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Long-baseline neutrino oscillation physics potential of the DUNE experiment |
Type |
Journal Article |
Year |
2020 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
80 |
Issue |
10 |
Pages |
978 - 34pp |
Keywords |
|
Abstract |
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: callum.wilkinson@lhep.unibe.ch |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000586405100002 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4594 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Neutrino interaction classification with a convolutional neural network in the DUNE far detector |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
102 |
Issue |
9 |
Pages |
092003 - 20pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000587596500004 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4598 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
Volume |
15 |
Issue |
12 |
Pages |
P12004 - 100pp |
Keywords |
Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC) |
Abstract |
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov; |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000595944800004 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4643 |
Permanent link to this record |
|
|
|
Author |
Miranda, O.G.; Papoulias, D.K.; Sanders, O.; Tortola, M.; Valle, J.W.F. |
Title |
Future CEvNS experiments as probes of lepton unitarity and light sterile neutrinos |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
102 |
Issue |
11 |
Pages |
113014 - 14pp |
Keywords |
|
Abstract |
We determine the sensitivities of short-baseline coherent elastic neutrino-nucleus scattering (CE nu NS) experiments using a pion decay at rest neutrino source as a probe for nonunitarity in the lepton sector, as expected in low-scale type-I seesaw schemes. We also identify the best configuration for probing light sterile neutrinos at future ton-scale liquid argon CE nu NS experiments, estimating the projected sensitivities on the sterile neutrino parameters. Possible experimental setups at the Spallation Neutron Source, Lujan facility and the European Spallation Source are discussed. Provided that systematic uncertainties remain under control, we find that CE nu NS experiments will be competitive with oscillation measurements in the long run. |
Address |
[Miranda, O. G.; Sanders, O.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000602268000005 |
Approved |
no |
Is ISI |
yes |
International Collaboration  |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4664 |
Permanent link to this record |