|   | 
Details
   web
Records
Author Lopez-Honorez, L.; Mena, O.; Moline, A.; Palomares-Ruiz, S.; Vincent, A.C.
Title (down) The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 004 - 40pp
Keywords dark matter theory; intergalactic media; reionization
Abstract Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.
Address [Lopez-Honorez, Laura] Vrije Univ Brussel, Theoret Natuurkunde, Pl Laan 2, B-1050 Brussels, Belgium, Email: llopezho@vub.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389859100050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2899
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O.
Title (down) Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 4 Pages 043515 - 9pp
Keywords
Abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.
Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000314765800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1326
Permanent link to this record
 

 
Author Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. .
Title (down) Synergy between cosmological and laboratory searches in neutrino physics Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 42 Issue Pages 101333 - 36pp
Keywords Neutrinos; Cosmology; Neutrino phenomenology
Abstract The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories.
Address [Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001112368600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5854
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 5 Pages 423 - 26pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000661101700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4859
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.
Title (down) Sterile neutrino models and nonminimal cosmologies Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 8 Pages 083522 - 9pp
Keywords
Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.
Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000303118100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 984
Permanent link to this record
 

 
Author Palomares-Ruiz, S.; Vincent, A.C.; Mena, O.
Title (down) Spectral analysis of the high-energy IceCube neutrinos Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages 103008 - 28pp
Keywords
Abstract A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the similar to 30 TeV-3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1: 1: 1)(circle plus), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron (anti) neutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
Address [Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355173100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2242
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O.; Vagnozzi, S.
Title (down) Soundness of dark energy properties Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 045 - 45pp
Keywords supernova type Ia – standard candles; dark energy experiments; cosmological parameters from CMBR; cosmological parameters from LSS
Abstract Type Ia Supernovae (SNeIa) used as standardizable candles have been instrumental in the discovery of cosmic acceleration, usually attributed to some form of dark energy (DE). Recent studies have raised the issue of whether intrinsic SNeIa luminosities might evolve with redshift. While the evidence for cosmic acceleration is robust to this possible systematic, the question remains of how much the latter can affect the inferred properties of the DE component responsible for cosmic acceleration. This is the question we address in this work. We use SNeIa distance moduli measurements from the Pantheon and JLA samples. We consider models where the DE equation of state is a free parameter, either constant or time-varying, as well as models where DE and dark matter interact, and finally a model-agnostic parametrization of effects due to modified gravity (MG). When SNeIa data are combined with Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements, we find strong degeneracies between parameters governing the SNeIa systematics, the DE parameters, and the Hubble constant H-0. These degeneracies significantly broaden the DE parameter uncertainties, in some cases leading to O(sigma) shifts in the central values. However, including low-redshift Baryon Acoustic Oscillation and Cosmic Chronometer measurements, as well as CMB lensing measurements, considerably improves the previous constraints, and the only remaining effect of the examined systematic is a less than or similar to 40% broadening of the uncertainties on the DE parameters. The constraints we derive on the MG parameters are instead basically unaffected by the systematic in question. We therefore confirm the overall soundness of dark energy properties.
Address [Di Valentino, Eleonora] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@mancher.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000551883400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4475
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102607 - 5pp
Keywords
Abstract A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4855
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102605 - 8pp
Keywords
Abstract The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4853
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102606 - 4pp
Keywords
Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4856
Permanent link to this record