|   | 
Details
   web
Records
Author Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O.
Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 10 Pages (down) 103534 - 7pp
Keywords
Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.
Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000278146700047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 429
Permanent link to this record
 

 
Author Witte, S.; Villanueva-Domingo, P.; Gariazzo, S.; Mena, O.; Palomares-Ruiz, S.
Title EDGES result versus CMB and low-redshift constraints on ionization histories Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 10 Pages (down) 103533 - 8pp
Keywords
Abstract We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z similar to 17.2, with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-alpha emission from star-forming galaxies, for a variety of possible reionization models within the standard ACDM framework (that is, a Universe with a cosmological constant. and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the ACDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.
Address [Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433291600010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3606
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Melchiorri, A.; Mena, O.; Renzi, F.
Title Novel model-marginalized cosmological bound on the QCD axion mass Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 10 Pages (down) 103528 - 16pp
Keywords
Abstract We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000999454300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5554
Permanent link to this record
 

 
Author Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O.
Title Neutrino and dark radiation properties in light of recent CMB observations Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 10 Pages (down) 103519 - 10pp
Keywords
Abstract Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with N-eff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the N-eff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity c(vis)(2) = 1/3 at the 2 sigma C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation measurements.
Address Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000319254500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1462
Permanent link to this record
 

 
Author Safi, S.; Farhang, M.; Mena, O.; Di Valentino, E.
Title Semiblind reconstruction of the history of effective number of neutrinos using CMB data Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 110 Issue 10 Pages (down) 103513 - 7pp
Keywords
Abstract We explore the possibility of redshift-dependent deviations in the contribution of relativistic degrees of freedom to the radiation budget of the cosmos, conventionally parametrized by the effective number of neutrinos Neff, from the predictions of the standard model. We expand the deviations 0Neff(z) in terms of top-hat functions and treat their amplitudes as the free parameters of the theory to be measured alongside the standard cosmological parameters by the Planck measurements of the cosmic microwave background (CMB) anisotropies and baryonic acoustic oscillations, as well as performing forecasts for futuristic CMB surveys such as PICO and CMB-S4. We reconstruct the history of 0Neff and find that with the current data the history is consistent with the standard scenario. Inclusion of the new degrees of freedom in the analysis increases H0 to 68.71 +/- 0.44, slightly reducing the Hubble tension. With the smaller forecasted errors on the 0Neff(z) parametrization modes from future CMB surveys, very accurate bounds are expected within the possible range of dark radiation models.
Address [Safi, Sarah; Farhang, Marzieh] Shahid Beheshti Univ, Dept Phys, Tehran 1983969411, Iran
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001360841900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6345
Permanent link to this record
 

 
Author Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Current status of modified gravity Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 10 Pages (down) 103512 - 10pp
Keywords
Abstract We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter sigma(8) and the current matter mass-energy density Omega(m) from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is vertical bar f(R0)vertical bar < 3.7 x 10(-6) at 95% C.L. Forthcoming cluster surveys covering 10 000 deg(2) in the sky, with galaxy surface densities of O(10) arcmin(-2) could improve the precision in the sigma(8)-Omega(m) relationship, tightening the above constraint.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000345534500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2017
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giunti, C.; Mena, O.; Pan, S.; Yang, W.Q.
Title Minimal dark energy: Key to sterile neutrino and Hubble constant tensions? Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 10 Pages (down) 103511 - 15pp
Keywords
Abstract Minimal dark energy models, described by the same number of free parameters of the standard cosmological model with cold dark matter plus a cosmological constant to parametrize the dark energy component, constitute very appealing scenarios which may solve long-standing, pending tensions. On the one hand, they alleviate significantly the tension between cosmological observations and the presence of one sterile neutrino motivated by the short-baseline anomalies: we obtain a 95% CL cosmological bound on the mass of a fully thermalized fourth sterile neutrino (N-eff = 4) equal to m(s) < 0.65(1.3) eV within the Phenomenologically Emergent Dark Energy (PEDE) and Vacuum Metamorphosis (VM) scenarios under consideration. Interestingly, these limits are in agreement with the observations at short-baseline experiments, and the PEDE scenario is favored with respect to the Lambda CDM case when the full data combination is considered. On the other hand, the Hubble tension is satisfactorily solved in almost all the minimal dark energy schemes explored here. These phenomenological scenarios may therefore shed light on differences arising from near and far Universe probes, and also on discrepancies between cosmological and laboratory sterile neutrino searches.
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000807806300013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5248
Permanent link to this record
 

 
Author Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Mota, D.F.; Chakraborty, S.
Title Probing the cold nature of dark matter Type Journal Article
Year 2025 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 111 Issue 10 Pages (down) 103509 - 16pp
Keywords
Abstract A pressureless dark matter component fits well with several cosmological observations. However, there are indications that cold dark matter may encounter challenges in explaining observations at small scales, particularly at galactic scales. Observational data suggest that dark matter models incorporating a pressure component could provide solutions to these small-scale problems. In this work, we investigate the possibility that present-day dark matter may result from a decaying noncold dark matter sector transitioning into the dark energy sector. As the sensitivity of astronomical surveys rapidly increases, we explore an interacting scenario between dark energy and noncold dark matter, where dark energy has a constant equation of state (wde), and dark matter, being noncold, also has a constant (non-zero) equation of state (wdm). Considering the phantom and quintessence nature of dark energy, characterized by its equation of state, we separately analyze interacting phantom and interacting quintessence scenarios. We constrain these scenarios using cosmic microwave background (CMB) measurements and their combination with external probes, such as DESI-BAO and PantheonPlus. From our analyses, we find that a very mild preference for noncold dark matter cannot be excluded based on the employed datasets. Additionally, for some datasets, there is a pronounced preference for the presence of an interaction at more than 95% confidence level (CL). Moreover, when the dark energy equation of state lies in the phantom regime, the S8 tension can be alleviated. This study suggests that cosmological models incorporating a noncold dark matter component should be considered as viable scenarios with novel phenomenological implications, as reflected in the present work.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001491443200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6676
Permanent link to this record
 

 
Author Palomares-Ruiz, S.; Vincent, A.C.; Mena, O.
Title Spectral analysis of the high-energy IceCube neutrinos Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages (down) 103008 - 28pp
Keywords
Abstract A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the similar to 30 TeV-3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1: 1: 1)(circle plus), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron (anti) neutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
Address [Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355173100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2242
Permanent link to this record
 

 
Author Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Do current data prefer a nonminimally coupled inflaton? Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages (down) 103004 - 6pp
Keywords
Abstract We examine the impact of a nonminimal coupling of the inflaton to the Ricci scalar, 1/2 xi R phi(2), on the inflationary predictions. Such a nonminimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential V proportional to phi(2), using the latest combined 2015 analysis of Planck and the BICEP2/Keck Array. We find that the presence of a coupling xi is favored at a significance of 99% C.L., assuming that nature has chosen the potential V proportional to phi(2) to generate the primordial perturbations and a number of e-foldings N = 60. Within the context of the same scenario, we find that the value of xi is different from zero at the 2 sigma level. When considering the cross-correlation polarization spectra from the BICEP2/Keck Array and Planck, a value of r = 0.038(-0.030)(+0.039) is predicted in this particular nonminimally coupled scenario. Future cosmological observations may therefore test these values of r and verify or falsify the nonminimally coupled model explored here.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000354979300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2237
Permanent link to this record