Home | [1–10] << 11 12 13 14 15 16 17 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Ho, S. et al; de Putter, R.; Mena, O. | ||||
Title | Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications | Type | Journal Article | ||
Year | 2012 | Publication | Astrophysical Journal | Abbreviated Journal | Astrophys. J. |
Volume | 761 | Issue | 1 | Pages | 14 - 24pp |
Keywords | cosmological parameters; dark energy; dark matter; distance scale | ||||
Abstract | The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/. | ||||
Address ![]() |
[Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwho@lbl.gov | ||||
Corporate Author | Thesis | ||||
Publisher | Iop Publishing Ltd | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0004-637x | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000311748800014 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 1263 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. | ||||
Title | Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment | Type | Journal Article | ||
Year | 2023 | Publication | Physical Review D | Abbreviated Journal | Phys. Rev. D |
Volume | 107 | Issue | 11 | Pages | 112012 - 25pp |
Keywords | |||||
Abstract | A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA | ||||
Corporate Author | Thesis | ||||
Publisher | Amer Physical Soc | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2470-0010 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001063367400002 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 5669 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amar, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. | ||||
Title | The DUNE far detector vertical drift technology Technical design report | Type | Journal Article | ||
Year | 2024 | Publication | Journal of Instrumentation | Abbreviated Journal | J. Instrum. |
Volume | 19 | Issue | 8 | Pages | T08004 - 418pp |
Keywords | |||||
Abstract | DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. |
||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA | ||||
Corporate Author | Thesis | ||||
Publisher | IOP Publishing Ltd | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1748-0221 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001381766600004 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 6429 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amar Es-Sghir, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. | ||||
Title | First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV | Type | Journal Article | ||
Year | 2024 | Publication | Physical Review D | Abbreviated Journal | Phys. Rev. D |
Volume | 110 | Issue | 9 | Pages | 092011 - 22pp |
Keywords | |||||
Abstract | ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380 +/- 26 mbarns for the 6 GeV/c setting and 379 +/- 35 mbarns for the 7 GeV/c setting. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA | ||||
Corporate Author | Thesis | ||||
Publisher | Amer Physical Soc | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2470-0010 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001381776600003 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 6443 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. | ||||
Title | Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC | Type | Journal Article | ||
Year | 2022 | Publication | European Physical Journal C | Abbreviated Journal | Eur. Phys. J. C |
Volume | 82 | Issue | 7 | Pages | 618 - 29pp |
Keywords | |||||
Abstract | DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es | ||||
Corporate Author | Thesis | ||||
Publisher | Springer | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1434-6044 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000826161300003 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 5293 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. | ||||
Title | Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment | Type | Journal Article | ||
Year | 2022 | Publication | Physical Review D | Abbreviated Journal | Phys. Rev. D |
Volume | 105 | Issue | 7 | Pages | 072006 - 32pp |
Keywords | |||||
Abstract | The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov | ||||
Corporate Author | Thesis | ||||
Publisher | Amer Physical Soc | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2470-0010 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000809663000001 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 5260 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. | ||||
Title | Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora | Type | Journal Article | ||
Year | 2023 | Publication | European Physical Journal C | Abbreviated Journal | Eur. Phys. J. C |
Volume | 83 | Issue | 7 | Pages | 618 - 25pp |
Keywords | |||||
Abstract | The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch | ||||
Corporate Author | Thesis | ||||
Publisher | Springer | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1434-6044 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001061746600005 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 5721 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amar Es-Sghir, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. | ||||
Title | Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light | Type | Journal Article | ||
Year | 2024 | Publication | Journal of Instrumentation | Abbreviated Journal | J. Instrum. |
Volume | 19 | Issue | 8 | Pages | P08005 - 42pp |
Keywords | Neutrino detectors; Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs; CMOS imagers, etc) | ||||
Abstract | Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: ngallice@bnl.gov; | ||||
Corporate Author | Thesis | ||||
Publisher | IOP Publishing Ltd | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1748-0221 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001381766600003 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 6431 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. | ||||
Title | Highly-parallelized simulation of a pixelated LArTPC on a GPU | Type | Journal Article | ||
Year | 2023 | Publication | Journal of Instrumentation | Abbreviated Journal | J. Instrum. |
Volume | 18 | Issue | 4 | Pages | P04034 - 35pp |
Keywords | Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC) | ||||
Abstract | The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov | ||||
Corporate Author | Thesis | ||||
Publisher | IOP Publishing Ltd | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1748-0221 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:000986658100009 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 5551 | ||
Permanent link to this record | |||||
Author | DUNE Collaboration (Abud, A.A. et al); Amar, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Hernandez-Garcia, J.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. | ||||
Title | DUNE Phase II: scientific opportunities, detector concepts, technological solutions | Type | Journal Article | ||
Year | 2024 | Publication | Journal of Instrumentation | Abbreviated Journal | J. Instrum. |
Volume | 19 | Issue | 12 | Pages | P12005 - 91pp |
Keywords | Cryogenic detectors; Liquid detectors; Neutrino detectors; Noble liquid detectors (scintillation, ionization, double-phase) | ||||
Abstract | The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a “Module of Opportunity”, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. | ||||
Address ![]() |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: s.soldner-rembold@imperial.ac.uk; | ||||
Corporate Author | Thesis | ||||
Publisher | IOP Publishing Ltd | Place of Publication | Editor | ||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1748-0221 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | WOS:001413560200001 | Approved | no | ||
Is ISI | yes | International Collaboration | yes | ||
Call Number | IFIC @ pastor @ | Serial | 6536 | ||
Permanent link to this record |