|   | 
Details
   web
Records
Author (up) Berbig, M.; Herrero-Garcia, J.; Landini, G.
Title Dynamical origin of neutrino masses and dark matter from a new confining sector Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 110 Issue 3 Pages 035011 - 13pp
Keywords
Abstract A dynamical mechanism, based on a confining non-Abelian dark symmetry, which generates Majorana masses for hyperchargeless fermions, is proposed. We apply it to the inverse seesaw scenario, which allows us to generate light neutrino masses from the interplay of TeV-scale pseudo-Dirac mass terms and a small explicit breaking of lepton number. A single generation of vectorlike dark quarks, transforming under a SU(3)D gauge symmetry, is coupled to a real singlet scalar, which serves as a portal between the dark quark condensate and three generations of heavy sterile neutrinos. Such a dark sector and the Standard Model (SM) are kept in thermal equilibrium with each other via sizable Yukawa couplings to the heavy neutrinos. In this framework, the lightest dark baryon, which has spin 3/2 and is stabilized at the renormalizable level by an accidental dark baryon number symmetry, can account for the observed relic density via thermal freeze-out from annihilations into the lightest dark mesons. These mesons, in turn, decay to heavy neutrinos, which produce SM final states upon decay. This model may be probed by next generation neutrino telescopes via neutrino lines produced from dark matter annihilations.
Address [Berbig, Maximilian; Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: berbig@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001347981700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6339
Permanent link to this record
 

 
Author (up) Herrero-Garcia, J.; Landini, G.; Vatsyayan, D.
Title Asymmetries in extended dark sectors: a cogenesis scenario Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 049 - 41pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter
Abstract The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.
Address [Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: juan.herrero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988319500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5550
Permanent link to this record