Records |
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. |
Title |
The KM3NeT potential for the next core-collapse supernova observation with neutrinos |
Type |
Journal Article |
Year |
2021 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
81 |
Issue |
5 |
Pages |
445 - 19pp |
Keywords  |
|
Abstract |
The KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with similar to 6200 optical modules comprising a total of similar to 200,000 photomultiplier tubes, KM3NeT will achieve sensitivity to similar to 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is estimated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a 5 sigma discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud (similar to 60 kpc). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to determine the arrival time of the neutrino burst with a few milliseconds precision for sources up to 5-8 kpc away, and detecting the peculiar signature of the standing accretion shock instability if the core-collapse supernova explosion happens closer than 3-5 kpc, depending on the progenitor mass. KM3NeT's capability to measure the neutrino flux spectral parameters is also presented. |
Address |
[Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: mcolomer@apc.in2p3.fr; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000671013200002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4894 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. |
Title |
Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA |
Type |
Journal Article |
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
82 |
Issue |
1 |
Pages |
26 - 16pp |
Keywords  |
|
Abstract |
The next generation of water Cherenkov neutrino telescopes in the Mediterranean Sea are under construction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmospheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4 sigma if the true ordering is normal and 2.3 sigma if inverted, after 3 years of data taking. The precision to measure Delta m(32)(2) and theta(23) were also estimated and found to be 85.10(-6) eV(2) and (<b>(+1.9)(-3.1))degrees for normal neutrino mass ordering and, 75.10(-6) eV(2) and ((+2.0)(-7.0))degrees for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude (nu)over-left-right-arrow tau event rate variations larger than 20% at 3 sigma level. |
Address |
[Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: steffen.hallmann@fau.de; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000741416700005 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5081 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search |
Type |
Journal Article |
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
82 |
Issue |
4 |
Pages |
317 - 16pp |
Keywords  |
|
Abstract |
The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV-PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given. |
Address |
[Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: lincetto@astro.ruhr-uni-bochum.de; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000780973500001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5197 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
First observation of the cosmic ray shadow of the Moon and the Sun with KM3NeT/ORCA |
Type |
Journal Article |
Year |
2023 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
83 |
Issue |
4 |
Pages |
344 - 9pp |
Keywords  |
|
Abstract |
This article reports the first observation of the Moon and the Sun shadows in the sky distribution of cosmicray induced muons measured by the KM3NeT/ORCA detector. The analysed data-taking period spans from February 2020 to November 2021, when the detector had 6 Detection Units deployed at the bottom of the Mediterranean Sea, each composed of 18 Digital Optical Modules. The shadows induced by theMoon and the Sun were detected at their nominal position with a statistical significance of 4.2 sigma and 6.2 sigma, and an angular resolution of sigma(res) = 0.49 degrees and sigma(res) = 0.66 degrees, respectively, consistent with the prediction of 0.53 degrees from simulations. This early result confirms the effectiveness of the detector calibration, in time, position and orientation and the accuracy of the event direction reconstruction. This also demonstrates the performance and the competitiveness of the detector in terms of pointing accuracy and angular resolution. |
Address |
[Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: brunner@cppm.in2p3.fr; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001055357200004 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5631 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions |
Type |
Journal Article |
Year |
2024 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
84 |
Issue |
7 |
Pages |
696 - 19pp |
Keywords  |
|
Abstract |
The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level. |
Address |
[Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Melo, I. Tosta e] INFN, Sez Catania, INFN CT, Via Santa Sofia 64, I-95123 Catania, Italy, Email: vladimir.kulikovskiy@ge.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001290702700001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6283 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Carretero, V.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
Astronomy potential of KM3NeT/ARCA |
Type |
Journal Article |
Year |
2024 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
84 |
Issue |
9 |
Pages |
885 - 17pp |
Keywords  |
|
Abstract |
The KM3NeT/ARCA neutrino detector is currently under construction at 3500 m depth offshore Capo Passero, Sicily, in the Mediterranean Sea. The main science objectives are the detection of high-energy cosmic neutrinos and the discovery of their sources. Simulations were conducted for the full KM3NeT/ARCA detector, instrumenting a volume of 1 km(3), to estimate the sensitivity and discovery potential to point-like neutrino sources. This paper covers the reconstruction of track- and shower-like signatures, as well as the criteria employed for neutrino event selection. With an angular resolution below 0.1 degrees for tracks and under 2 degrees for showers, the sensitivity to point-like neutrino sources surpasses existing observed limits across the entire sky. |
Address |
[Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] Ist Nazl Fis Nucl, Sez Catania INFN CT, Via Santa Sofia 64, I-95123 Catania, Italy, Email: thijsvaneeden@gmail.com |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001325276300001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6319 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Carretero, V.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
Observation of an ultra-high-energy cosmic neutrino with KM3NeT |
Type |
Journal Article |
Year |
2025 |
Publication |
Nature |
Abbreviated Journal |
Nature |
Volume |
638 |
Issue |
8050 |
Pages |
376-382 |
Keywords  |
|
Abstract |
The detection of cosmic neutrinos with energies above a teraelectronvolt (TeV) offers a unique exploration into astrophysical phenomena(1-3). Electrically neutral and interacting only by means of the weak interaction, neutrinos are not deflected by magnetic fields and are rarely absorbed by interstellar matter: their direction indicates that their cosmic origin might be from the farthest reaches of the Universe. High-energy neutrinos can be produced when ultra-relativistic cosmic-ray protons or nuclei interact with other matter or photons, and their observation could be a signature of these processes. Here we report an exceptionally high-energy event observed by KM3NeT, the deep-sea neutrino telescope in the Mediterranean Sea(4), which we associate with a cosmic neutrino detection. We detect a muon with an estimated energy of 120(-60)(+110) petaelectronvolts (PeV). In light of its enormous energy and near-horizontal direction, the muon most probably originated from the interaction of a neutrino of even higher energy in the vicinity of the detector. The cosmic neutrino energy spectrum measured up to now(5-7) falls steeply with energy. However, the energy of this event is much larger than that of any neutrino detected so far. This suggests that the neutrino may have originated in a different cosmic accelerator than the lower-energy neutrinos, or this may be the first detection of a cosmogenic neutrino(8), resulting from the interactions of ultra-high-energy cosmic rays with background photons in the Universe. |
Address |
[Aiello, S.; Bruno, R.; Ferrara, G.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I.] INFN, Sez Catania, INFN CT, Catania, Italy |
Corporate Author |
|
Thesis |
|
Publisher |
Nature Portfolio |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0028-0836 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001427012000001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6607 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. |
Title |
On the Potential Cosmogenic Origin of the Ultra-high-energy Event KM3-230213A |
Type |
Journal Article |
Year |
2025 |
Publication |
Astrophysical Journal Letters |
Abbreviated Journal |
Astrophys. J. Lett. |
Volume |
984 |
Issue |
2 |
Pages |
L41 - 8pp |
Keywords  |
|
Abstract |
On 2023 February 13, the KM3NeT/ARCA telescope observed a track-like event compatible with a ultra-high-energy muon with an estimated energy of 120 PeV, produced by a neutrino with an even higher energy, making it the most energetic neutrino event ever detected. A diffuse cosmogenic component is expected to originate from the interactions of ultra-high-energy cosmic rays with ambient photon and matter fields. The flux level required by the KM3NeT/ARCA event is, however, in tension with the standard cosmogenic neutrino predictions based on the observations collected by the Pierre Auger Observatory and Telescope Array over the last decade of the ultra-high-energy cosmic rays above the ankle (hence from the local Universe, z less than or similar to 1). We show here that both observations can be reconciled by extending the integration of the equivalent cosmogenic neutrino flux up to a redshift of zmax=6 and considering either source evolution effects or the presence of a subdominant independent proton component in the ultra-high-energy cosmic-ray flux, thus placing constraints on known cosmic accelerators. |
Address |
[Adriani, O.; Berti, E.; Betti, P.; Bottai, S.; Mori, N.; Pacini, L.; Papini, P.; Scaringella, M.] INFN, Sez Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: acondorelli@km3net.de; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2041-8205 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001481580600001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6675 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. |
Title |
gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes |
Type |
Journal Article |
Year |
2020 |
Publication |
Computer Physics Communications |
Abbreviated Journal |
Comput. Phys. Commun. |
Volume |
256 |
Issue |
|
Pages |
107477 - 15pp |
Keywords  |
Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE |
Abstract |
The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001. |
Address |
[Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0010-4655 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000564482200008 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4520 |
Permanent link to this record |
|
|
|
Author |
KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Lotze, M.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. |
Title |
Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources |
Type |
Journal Article |
Year |
2019 |
Publication |
Astroparticle Physics |
Abbreviated Journal |
Astropart Phys. |
Volume |
111 |
Issue |
|
Pages |
100-110 |
Keywords  |
Astrophysical neutrino sources; Cherenkov underwater neutrino telescope; KM3NeT |
Abstract |
KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an E(-2 )spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with 3 sigma significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects. |
Address |
[Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.; Tatone, F.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sapienza@lns.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0927-6505 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000470047300008 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4047 |
Permanent link to this record |