|   | 
Details
   web
Records
Author Arbelaez, C.; Hirsch, M.; Restrepo, D.
Title Fermionic triplet dark matter in an SO(10)-inspired left-right model Type Journal Article
Year 2017 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 9 Pages 095034 - 9pp
Keywords
Abstract We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z(2) symmetry from the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic density and predictions for direct detection are discussed for both scenarios. The first scenario with a SUd(2)(R) vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct detection experiments. The second scenario, with an additional SU(2)R triplet, opens up a scalar portal leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM parameter space consistent with phenomenological requirements can also lead to successful gauge coupling unification in a SO(10) setup.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@.usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000402471800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3154
Permanent link to this record
 

 
Author Arbelaez, C.; Gonzalez, M.; Kovalenko, S.G.; Hirsch, M.
Title QCD-improved limits from neutrinoless double beta decay Type Journal Article
Year 2017 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 015010 - 12pp
Keywords
Abstract We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0 nu beta beta ). As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of 0 nu beta beta decay. All high-scale models (HSM) in this class match at some scale around a similar to few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one nontrivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to 0 nu beta beta decay, using our general method.
Address [Arbelaez, C.; Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000405188200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3198
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.
Title Searches for light sterile neutrinos with multitrack displaced vertices Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 5 Pages 055025 - 6pp
Keywords
Abstract We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy ( considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with root s = 13 TeV and 300 fb(-1) is able to probe sterile neutrino masses between 10 GeV < m(N) < 20 GeV ( for a right-handed gauge boson mass of 2 TeV < m(WR) < 3.5 TeV). To probe higher masses up to m(N) similar to 30 GeV and m(WR) < 5 TeV, 3000 fb(-1) will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.
Address [Cottin, Giovanna] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England, Email: gcottin@phys.ntu.edu.tw;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000427640400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3526
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.; Srivastava, R.
Title Delta L=3 processes: Proton decay and the LHC Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 075026 - 7pp
Keywords
Abstract We discuss lepton number violation in three units. From an effective field theory point of view, Delta L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Delta L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9, 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.
Address [Fonseca, Renato M.; Hirsch, Martin; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000430459800005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3560
Permanent link to this record
 

 
Author Anamiati, G.; Fonseca, R.M.; Hirsch, M.
Title Quasi-Dirac neutrino oscillations Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages 095008 - 16pp
Keywords
Abstract Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
Address [Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432970600004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3581
Permanent link to this record
 

 
Author Gonzalez, M.; Hirsch, M.; Kovalenko, S.G.
Title Neutrinoless double beta decay and QCD running at low energy scales Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 11 Pages 115005 - 6pp
Keywords
Abstract There is a common belief that the main uncertainties in the theoretical analysis of neutrinoless double beta (0 nu beta beta) decay originate from the nuclear matrix elements. Here, we uncover another previously overlooked source of potentially large uncertainties stemming from nonperturbative QCD effects. Recently perturbative QCD corrections have been calculated for all dimension 6 and 9 effective operators describing 0 nu beta beta-decay and their importance for a reliable treatment of 0 nu beta beta-decay has been demonstrated. However, these perturbative results are valid at energy scales above similar to 1 GeV, while the typical 0 nu beta beta scale is about similar to 100 MeV. In view of this fact we examine the possibility of extrapolating the perturbative results towards sub-GeV nonperturbative scales on the basis of the QCD coupling constant “freezing” behavior using background perturbation theory. Our analysis suggests that such an infrared extrapolation does modify the perturbative results for both short-range and long-range mechanisms of 0 nu beta beta-decay in general only moderately. We also discuss that the tensor circle times tensor effective operator cannot appear alone in the low energy limit of any renormalizable high-scale model and then demonstrate that all five linearly independent combinations of the scalar and tensor operators, which can appear in renormalizable models, are infrared stable.
Address [Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso 2390123, Chile, Email: marcela.gonzalezp@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000434211200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3603
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.
Title Delta L >= 4 lepton number violating processes Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 1 Pages 015035 - 12pp
Keywords
Abstract We discuss the experimental prospects for observing processes which violate lepton number (Delta L) in four units ( or more). First, we reconsider neutrinoless quadruple beta decay, deriving a model independent and very conservative lower limit on its half- life of the order of 10(41) ys for Nd-150. This renders quadruple beta decay unobservable for any feasible experiment. We then turn to a more general discussion of different possible low-energy processes with values Delta L >= 4. A simple operator analysis leads to rather pessimistic conclusions about the observability at low-energy experiments in all cases we study. However, the situation looks much brighter for accelerator experiments. For two example models with Delta L = 4 and another one with Delta L = 5, we show how the LHC or a hypothetical future pp collider, such as the FCC, could probe multilepton number violating operators at the TeV scale.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Spain Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000439791500005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3675
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.
Title Displaced vertices as probes of sterile neutrino mixing at the LHC Type Journal Article
Year 2018 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 3 Pages 035012 - 6pp
Keywords
Abstract We investigate the reach at the LHC to probe light sterile neutrinos with displaced vertices. We focus on sterile neutrinos N with masses m(N) similar to (5-30) GeV that are produced in rare decays of the standard model gauge bosons and decay inside the inner trackers of the LHC detectors. With a strategy that triggers on the prompt lepton accompanying the N displaced vertex and considers charged tracks associated with it, we show that the 13 TeV LHC with 3000/fb is able to probe active-sterile neutrino mixings down to vertical bar V-lN vertical bar(2) approximate to 10(-9), with l = e, mu, which is an improvement of up to 4 orders of magnitude when comparing with current experimental limits from trileptons and proposed lepton-jets searches. In the case when tau mixing is present, mixing angles as low as vertical bar V-tau N vertical bar(2) approximate to 10(-8) can be accessed.
Address [Cottin, Giovanna] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan, Email: gcottin@phys.ntu.edu.tw;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000441109800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3684
Permanent link to this record
 

 
Author Dercks, D.; Dreiner, H.K.; Hirsch, M.; Wang, Z.S.
Title Long-lived fermions at AL3X Type Journal Article
Year 2019 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 5 Pages 055020 - 10pp
Keywords
Abstract Recently Gligorov et al. [V. V. Gligorov et al., Phys. Rev. D 99, 015023 (2019)] proposed to build a cylindrical detector named AL3X close to the ALICE experiment at interaction point (IP) 2 of the LHC, aiming for discovery of long-lived particles (LLPs) during Run 5 of the HL-LHC. We investigate the potential sensitivity reach of this detector in the parameter space of different new-physics models with long-lived fermions namely heavy neutral leptons (HNLs) and light supersymmetric neutralinos, which have both not previously been studied in this context. Our results show that the AL3X reach can be complementary or superior to that of other proposed detectors such as CODEX-b, FASER, MATHUSLA and SHiP.
Address [Dercks, Daniel] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: daniel.dercks@desy.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000461906400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3949
Permanent link to this record
 

 
Author Cordero-Carrion, I.; Hirsch, M.; Vicente, A.
Title Master Majorana neutrino mass parametrization Type Journal Article
Year 2019 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 7 Pages 075019 - 6pp
Keywords
Abstract After introducing a master formula for the Majorana neutrino mass matrix, we present a master parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This parametrization can be used for any model that induces Majorana neutrino masses. The application of the master parametrization is also illustrated in an example model, with special focus on its lepton flavor violating phenomenology.
Address [Cordero-Carrion, I.] Univ Valencia, Dept Matemat, E-46100 Valencia, Spain, Email: isabel.cordero@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000464743100007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3981
Permanent link to this record