|   | 
Details
   web
Records
Author Anderson, P.R.; Balbinot, R.; Dudley, R.A.; Fabbri, A.; Peake, A.; Peñalver, D.
Title Fine structure of the peaks of the correlation function in acoustic black holes: A complete analytical model Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 110 Issue (up) 12 Pages 125024 - 11pp
Keywords
Abstract The detailed structure of the peaks appearing in the density-density correlation function for an acoustic black hole formed by a Bose-Einstein condensate is analytically discussed for a particular, but physically meaningful, sound velocity profile that allows the field modes to be exactly computed.
Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001386395400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6403
Permanent link to this record
 

 
Author Balbinot, R.; Carusotto, I.; Fabbri, A.; Recati, A.
Title Testing Hawking Particle Creation By Black Holes Through Correlation Measurements Type Journal Article
Year 2010 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 19 Issue (up) 14 Pages 2371-2377
Keywords
Abstract Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.
Address [Balbinot, R.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes ISI:000286112000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 534
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.; Mayoral, C.
Title Hawking effect in BECs acoustic white holes Type Journal Article
Year 2013 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 128 Issue (up) 2 Pages 16 - 21pp
Keywords
Abstract Bogoliubov pseudoparticle creation in a BEC undergoing a WH-like flow is investigated analytically in the case of a one-dimensional geometry with stepwise homogeneous regions. Comparison of the results with those corresponding to a BH flow is performed. The implications for the analogous gravitational problem is discussed.
Address [Balbinot, R.; Fabbri, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000316122600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1378
Permanent link to this record
 

 
Author Carusotto, I.; Balbinot, R.; Fabbri, A.; Recati, A.
Title Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates Type Journal Article
Year 2010 Publication European Physical Journal D Abbreviated Journal Eur. Phys. J. D
Volume 56 Issue (up) 3 Pages 391-404
Keywords
Abstract We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the emission of correlated pairs of Bogoliubov phonons by a time-dependent atom-atom scattering length. This effect can be considered as a condensed matter analog of the dynamical Casimir effect of quantum field theory. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical studies of analog Hawking radiation from acoustic black holes.
Address [Carusotto, I.; Recati, A.] Univ Trent, CNR, INFM, BEC Ctr, I-38050 Trento, Italy, Email: carusott@science.unitn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6060 ISBN Medium
Area Expedition Conference
Notes ISI:000274327600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 506
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Quantum correlations across the horizon in acoustic and gravitational black holes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue (up) 4 Pages 045010 - 20pp
Keywords
Abstract We investigate, within the framework of quantum field theory in curved space, the correlations across the horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates, and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black hole. By considering equal-time correlation functions, we find a striking disagreement between the two cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one. The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal times, which indeed display the expected peak.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761172600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5156
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
Year 2023 Publication Physics Abbreviated Journal Physics
Volume 5 Issue (up) 4 Pages 968-982
Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon
Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001130983900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5858
Permanent link to this record
 

 
Author Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P.R.
Title Hawking radiation of massive modes and undulations Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue (up) 6 Pages 064022 - 17pp
Keywords
Abstract We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.
Address [Coutant, Antonin; Parentani, Renaud] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France, Email: antonin.coutant@th.u-psud.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308642300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1174
Permanent link to this record
 

 
Author Anderson, P.R.; Fabbri, A.; Balbinot, R.
Title Low frequency gray-body factors and infrared divergences: Rigorous results Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue (up) 6 Pages 064061 - 18pp
Keywords
Abstract Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a one-dimensional Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.
Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000352062800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2172
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.; Anderson, P.R.
Title Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue (up) 6 Pages 064046 - 6pp
Keywords
Abstract A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.
Address [Fabbri, Alessandro; Balbinot, Roberto] Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy, Email: afabbri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000372421100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2582
Permanent link to this record
 

 
Author Mauro, S.; Balbinot, R.; Fabbri, A.; Shapiro, I.L.
Title Fourth derivative gravity in the auxiliary fields representation and application to the black-hole stability Type Journal Article
Year 2015 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 130 Issue (up) 7 Pages 135 - 8pp
Keywords
Abstract We consider an auxiliary fields formulation for the general fourth-order gravity on an arbitrary curved background. The case of a Ricci-flat background is elaborated in detail and it is shown that there is an equivalence with the standard metric formulation. At the same time, using auxiliary fields helps to make perturbations to look simpler and the results clearer. As an application we reconsider the linear perturbations for the classical Schwarzschild solution. We also briefly discuss the relation to the effect of massive unphysical ghosts in the theory.
Address [Mauro, Sebastiao; Shapiro, Ilya L.] Univ Fed Juiz de Fora, Dept Fis, ICE, BR-36036360 Juiz De Fora, MG, Brazil, Email: afabbri@ific.uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000358147100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2309
Permanent link to this record