|
Records |
Links |
|
Author  |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |

|
|
Title |
First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
101 |
Issue |
11 |
Pages |
112001 - 44pp |
|
|
Keywords |
|
|
|
Abstract |
This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8 x 10(20) and 6.3 x 10(20) protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference, and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects. |
|
|
Address |
[Bravo Berguno, D.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000537161300001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4418 |
|
Permanent link to this record |
|
|
|
|
Author  |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |

|
|
Title |
First measurement of the charged current (nu)over-bar(mu) double differential cross section on a water target without( )pions in the final state |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
102 |
Issue |
1 |
Pages |
012007 - 16pp |
|
|
Keywords |
|
|
|
Abstract |
This paper reports the first differential measurement of the charged-current (nu) over bar (mu) interaction cross section on water with no pions in the final state. The unfolded flux-averaged measurement using the T2K off-axis near detector is given in double-differential bins of mu(+) momentum and angle. The integrated cross section in a restricted phase space is sigma = (1.11 +/- 0.18) x 10(-38) cm(2) per water molecule. Comparisons with several nuclear models are also presented. |
|
|
Address |
[Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Kameda, J.; Kataoka, Y.; Kato, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Tanaka, H. K.; Yano, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Akita, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000550579800001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4465 |
|
Permanent link to this record |
|
|
|
|
Author  |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |

|
|
Title |
Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280 |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
|
|
Volume |
10 |
Issue |
10 |
Pages |
114 - 43pp |
|
|
Keywords |
Other experiments |
|
|
Abstract |
The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, d sigma/dp and d sigma/d cos(theta), and the total cross-sections in a limited phase-space in momentum and scattering angle (p 300 MeV/c and theta <= 45 degrees) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement. |
|
|
Address |
[Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000583585900001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4589 |
|
Permanent link to this record |
|
|
|
|
Author  |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A. |

|
|
Title |
T2K measurements of muon neutrino and antineutrino disappearance using 3.13 x 10(21) protons on target |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
103 |
Issue |
1 |
Pages |
L011101 - 9pp |
|
|
Keywords |
|
|
|
Abstract |
We report measurements by the T2K experiment of the parameters theta(23) and Delta m(32)(2), which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at T2K's neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from 1.49 x 10(21) protons on target (POT) in neutrino mode and 1.64 x 10(21) POT in antineutrino mode are used. The best-fit values obtained by T2K were sin(2)(theta(23)) = 0.51(-0.07)(+0.06) (0.43(-0.05)(+0.21)) and Delta m(32)(2) = 2.47(-0.09)(+0.08) (2.50(-0.13)(+0.18)) x 10(-3) eV(2)/c(4) for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take nonphysical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle. |
|
|
Address |
[Berguno, D. Bravo; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000612138600005 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4734 |
|
Permanent link to this record |
|
|
|
|
Author  |
Super-Kamiokande and T2K Collaborations (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P. |

|
|
Title |
First Joint Oscillation Analysis of Super-Kamiokande Atmospheric and T2K Accelerator Neutrino Data |
Type |
Journal Article |
|
Year |
2025 |
Publication |
Physical Review Letters |
Abbreviated Journal |
Phys. Rev. Lett. |
|
|
Volume |
134 |
Issue |
1 |
Pages |
011801 - 13pp |
|
|
Keywords |
|
|
|
Abstract |
The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of 19.7(16.3) x 10(20) protons on target in (anti)neutrino mode, the analysis finds a 1.9 sigma exclusion of CP conservation (defined as J(CP) = 0) and a 1.2 sigma exclusion of the inverted mass ordering. |
|
|
Address |
[Abe, K.; Abe, S.; Bronner, C.; Hayato, Y.; Hiraide, K.; Hosokawa, K.; Ieki, K.; Ikeda, M.; Kameda, J.; Kanemura, Y.; Kaneshima, R.; Kashiwagi, Y.; Kataoka, Y.; Miki, S.; Mine, S.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Noguchi, Y.; Sato, K.; Sekiya, H.; Shiba, H.; Shimizu, K.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Yano, T.; Katori, T.; Tanaka, H. K.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Akita, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-9007 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001399982500001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
6544 |
|
Permanent link to this record |
|
|
|
|
Author  |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |

|
|
Title |
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC |
Type |
Journal Article |
|
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
|
|
Volume |
82 |
Issue |
7 |
Pages |
618 - 29pp |
|
|
Keywords |
|
|
|
Abstract |
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000826161300003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5293 |
|
Permanent link to this record |
|
|
|
|
Author  |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |

|
|
Title |
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network |
Type |
Journal Article |
|
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
|
|
Volume |
82 |
Issue |
10 |
Pages |
903 - 19pp |
|
|
Keywords |
|
|
|
Abstract |
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. |
|
|
Address |
[Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000866503200001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5386 |
|
Permanent link to this record |
|
|
|
|
Author  |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |

|
|
Title |
Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
17 |
Issue |
1 |
Pages |
P01005 - 111pp |
|
|
Keywords |
Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC) |
|
|
Abstract |
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. |
|
|
Address |
[Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000757487100001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5131 |
|
Permanent link to this record |
|
|
|
|
Author  |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |

|
|
Title |
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
105 |
Issue |
7 |
Pages |
072006 - 32pp |
|
|
Keywords |
|
|
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000809663000001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5260 |
|
Permanent link to this record |
|
|
|
|
Author  |
DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F. |

|
|
Title |
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
107 |
Issue |
9 |
Pages |
092012 - 22pp |
|
|
Keywords |
|
|
|
Abstract |
Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001010953400003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5588 |
|
Permanent link to this record |