|   | 
Details
   web
Records
Author CALICE Collaboration (White, A. et al); Irles, A.
Title Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (down) 18 Issue 11 Pages P11018 - 39pp
Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials
Abstract The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.
Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001127235400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5874
Permanent link to this record
 

 
Author Durieux, G.; Irles, A.; Miralles, V.; Peñuelas, A.; Perello, M.; Poschl, R.; Vos, M.
Title The electro-weak couplings of the top and bottom quarks – Global fit and future prospects Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 12 Issue 12 Pages 098 - 44pp
Keywords Phenomenology of Field Theories in Higher Dimensions
Abstract We evaluate the implications of LHC and LEP/SLC measurements for the electro-weak couplings of the top and bottom quarks. We derive global bounds on the Wilson coefficients of ten two-fermion operators in an effective field theory description. The combination of hadron collider data with Z -pole measurements is found to yield tight limits on the operator coefficients that modify the left-handed couplings of the bottom and top quark to the Z boson. We also present projections for the high-luminosity phase of the LHC and for future electron-positron colliders. The bounds on the operator coefficients are expected to improve substantially during the remaining LHC programme, by factors of 1 to 5 if systematic uncertainties are scaled as statistical ones. The operation of an e(+)e(-) collider at a center-of-mass energy above the top-quark pair production threshold is expected to further improve the bounds by one to two orders of magnitude. The combination of measurements in pp and e(+)e(-) collisions allows for a percent-level determination of the top-quark Yukawa coupling, that is robust in a global fit.
Address [Durieux, Gauthier] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel, Email: durieux@campus.technion.ac.il;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513489700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4280
Permanent link to this record
 

 
Author Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K.
Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 05 Issue 5 Pages 146 - 63pp
Keywords Specific QCD Phenomenology; Top Quark
Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
Address [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000801110800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5236
Permanent link to this record