|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Impact of curvature divergences on physical observers in a wormhole space-time with horizons Type Journal Article
Year 2016 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 33 Issue 11 Pages 115007 - 12pp
Keywords Singularities; black holes; metric-affine geometry
Abstract The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
Address [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000377442000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2728
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Menezes, R.; Olmo, G.J.; Rubiera-Garcia, D.
Title Robustness of braneworld scenarios against tensorial perturbations Type Journal Article
Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 32 Issue 21 Pages 215011 - 10pp
Keywords brane-worlds; tensorial perturbations; metric-affine geometry
Abstract Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000364921200014 Approved no
Is ISI no International Collaboration yes
Call Number IFIC @ pastor @ Serial 2459
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Some recent results on Ricci-based gravity theories Type Journal Article
Year 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume (down) 31 Issue Pages 2240012 - 15pp
Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects
Abstract In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000848888900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5350
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title The quantum, the geon and the crystal Type Journal Article
Year 2015 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume (down) 24 Issue 9 Pages 1542013 - 15pp
Keywords Effective geometries; crystalline structures; modified gravity; metric-affine approach; geons
Abstract Effective geometries arising from a hypothetical discrete structure of spacetime can play an important role in the understanding of the gravitational physics beyond General Relativity (GR). To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work, we study metric-affine theories with nonmetricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically nontrivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitational theories can provide useful insights on both sides.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: drubiera@fudan.edu.cn
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000358793200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2322
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
Year 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume (down) 21 Issue 8 Pages 1250067 - 6pp
Keywords Extended theories of gravity; Palatini formalism; Planck scale
Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000308497500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1154
Permanent link to this record