toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title Masses of magnetized pseudoscalar and vector mesons in an extended NJL model: The role of axial vector mesons Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 5 Pages 054014 - 30pp  
  Keywords  
  Abstract We study the mass spectrum of light pseudoscalar and vector mesons in the presence of an external uniform magnetic field B., considering the effects of the mixing with the axial-vector meson sector. The analysis is performed within a two-flavor NJL-like model which includes isoscalar and isovector couplings together with a flavor mixing 't Hooft-like term. The effect of the magnetic field on charged particles is taken into account by retaining the Schwinger phases carried by quark propagators, and expanding the corresponding meson fields in proper Ritus-like bases. The spin-isospin and spin-flavor decomposition of meson mass states is also analyzed. For neutral pion masses it is shown that the mixing with axial vector mesons improves previous theoretical results, leading to a monotonic decreasing behavior with B that is in good qualitative agreement with lattice QCD (LQCD) calculations, both for the case of constant or B-dependent couplings. Regarding charged pions, it is seen that the mixing softens the enhancement of their mass with B. As a consequence, the energy becomes lower than the one corresponding to a pointlike pion, improving the agreement with LQCD results. The agreement is also improved for the magnetic behavior of the lowest.thorn energy state, which does not vanish for the considered range of values of B-a fact that can be relevant in connection with the occurrence of meson condensation for strong magnetic fields.  
  Address [Coppola, M.; Scoccola, N. N.] Comis Nacl Energia Atom, Dept Fis, Ave Libertador 8250, RA-1429 Buenos Aires, Argentina  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001196327000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6119  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F. url  doi
openurl 
  Title Present and future of Cosmo Lattice Type Journal Article
  Year 2024 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 87 Issue 9 Pages 094901 - 20pp  
  Keywords early Universe; non-linear dynamics; real-time lattice simulations; cosmology; gauge-invariant lattice techniques; CosmoLattice; gravitational waves  
  Abstract We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.  
  Address [Figueroa, Daniel G.; Torrenti, Francisco] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001284570700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6219  
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
 

 
Author Alkofer, R.; Llanes-Estrada, F.J.; Salas-Bernardez, A. url  doi
openurl 
  Title Spinning pairs: Supporting 3P0 quark-pair creation from Landau-gauge Green's functions Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 074015 - 21pp  
  Keywords  
  Abstract Abundant phenomenology suggests that strong decays from relatively low-excitation hadrons into other hadrons proceed by the creation of a light quark-antiquark pair with zero total angular momentum, the so called 3P0 mechanism originating from a scalar bilinear. Yet the quantum chromodynamics (QCD) interaction is perturbatively mediated by gluons of spin one, and QCD presents a chirally symmetric Lagrangian. Such scalar decay term must be spontaneously generated upon breaking chiral symmetry. We attempt to reproduce this with the help of the quark-gluon vertex in Landau gauge, whose nonperturbative structure has been reasonably elucidated in the last years, and insertions of a uniform, constant chromoelectric field. This is akin to Schwinger pair production in quantum electrodynamics (QED), and we provide a comparison with its two field-insertions diagram. We find that, the symmetry being cylindrical, the adequate quantum numbers to discuss the production are rather 3E0, 3E1, and 3110 as in diatomic molecules, and we indeed find a sizeable contribution of the third decay mechanism, which may give a rationale for the 3P0 phenomenology, as long as the momentum of the produced pair is at or below the scale of the bare or dynamically generated fermion mass. On the other hand, ultrarelativistic fermions are rather ejected with 3E1 quantum numbers. In QED, our results suggest that 3E0 dominates, whereas the constraint of producing a color singlet in QCD leads to 3110 dominance at sub-GeV momenta.  
  Address [Alkofer, Reinhard] Karl Franzens Univ Graz, Inst Phys, NAWI Graz, Univ Pl 5, A-8010 Graz, Austria  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001235870400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6189  
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D. url  doi
openurl 
  Title Neutrino masses from new seesaw models: low-scale variants and phenomenological implications Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 8 Pages 803 - 19pp  
  Keywords  
  Abstract With just the Standard Model Higgs doublet, there are only three types of seesaw models that generate light Majorana neutrino masses at tree level after electroweak spontaneous symmetry breaking. However, if there exist additional TeV scalars acquiring vacuum expectation values, coupled with heavier fermionic multiplets, several new seesaw models become possible. These new seesaws are the primary focus of this study and correspond to the tree-level ultraviolet completions of the effective operators studied in a companion publication. We are interested in the genuine cases, in which the standard seesaw contributions are absent. In addition to the tree-level generation of neutrino masses, we also consider the one-loop contributions. Furthermore, we construct low-energy versions that exhibit a very rich phenomenology. Specifically, we scrutinise the generation of dimension-6 operators and explore their implications, including non-unitarity of the leptonic mixing matrix, non-universal Z-boson interactions, and lepton flavor violation. Finally, we provide (Generalised) Scotogenic-like variants that incorporate viable dark matter candidates.  
  Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: simone.marciano@uniroma3.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001289661800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6229  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva