toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Belle-II DEPFET and PXD Collaborations (Ahlburg, P. et al); Marinas, C. openurl 
  Title The new and complete Belle II DEPFET pixel detector: Commissioning and previous operational experience Type Journal Article
  Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1068 Issue Pages 169763 - 6pp  
  Keywords Belle II; DEPFET; Pixel detector; Vertex detector  
  Abstract The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, has collected e+e- + e – collision data between 2019 and 2022. After reaching a record-breaking instantaneous luminosity of 4.71x1034 . 71x10 34 cm -2 s -1 and recording a dataset corresponding to 424 fb -1 , it completed its first planned long shutdown phase in December 2023. Aside from upgrades of the collider and detector maintenance, the shutdown was used for the installation of the two-layer Pixel VerteX Detector (PXD). As the innermost sub-detector, multiple scattering effects need to be reduced. PXD utilizes the Depleted P-channel Field Effect Transistor (DEPFET) technology, allowing for a material budget of 0.21% X0 0 per layer. Each of the tracker's 40 modules consists of an array of 250x768 pixels with a pitch ranging from 50 μmx 55 μm for the inner to 85 μmx 55 μm for the outer layer yielding high gain and high signal-to-noise ratio while retaining about 99% hit efficiency. This article discusses the experience of the 4-year operation of the previous single-layer PXD in harsh background conditions as well as commissioning and testing of the fully-populated PXD2 during Long Shutdown 1.  
  Address [Ahlburg, P.; Bernlochner, F.; Dingfelder, J.; Farkas, R.; Giakoustidis, G.; Khan, M.; Krueger, H.; Paschen, B.; Schmitz, J.; Wermes, N.] Univ Bonn, D-53115 Bonn, Germany, Email: jannes.schmitz@uni-bonn.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001306604900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6252  
Permanent link to this record
 

 
Author Kaur, D.; Khan Chowdhury, N.R.; Rahaman, U. url  doi
openurl 
  Title Effect of non-unitary mixing on the mass hierarchy and CP violation determination at the Protvino to ORCA experiment Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 2 Pages 118 - 18pp  
  Keywords  
  Abstract In this paper, we have estimated the neutrino mass ordering and the CP violation sensitivity of the proposed Protvino to ORCA (P2O) experiment after 6 years of data-taking. Both unitary and non-unitary 3x3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} neutrino mass mixing have been considered in the simulations. A forecast analysis deriving possible future constraints on non-unitary parameters at P2O have been performed.  
  Address [Kaur, Daljeet] Univ Delhi, SGTB Khalsa Coll, New Delhi 110007, India, Email: daljeet.kaur97@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156042900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5930  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Palavric, A.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Constraints on subleading interactions in beta decay Lagrangian Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 091 - 54pp  
  Keywords Effective Field Theories; Hadronic Matrix Elements and Weak Decays; Effective Field Theories of QCD; SMEFT  
  Abstract We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.  
  Address [Falkowski, Adam; Rodriguez-Sanchez, Antonio] Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001163170700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5966  
Permanent link to this record
 

 
Author Balaudo, A.; Calore, F.; De Romeri, V.; Donato, F. url  doi
openurl 
  Title NAJADS: a self-contained framework for the direct determination of astrophysical J-factors Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 001 - 33pp  
  Keywords dark matter simulations; dark matter theory; dark matter detectors  
  Abstract Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001  
  Address [Balaudo, Anna] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands, Email: balaudo@strw.leidenuniv.nl;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001182021200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6018  
Permanent link to this record
 

 
Author Sorelli, G.; Gessner, M.; Treps, N.; Walschaers, M. url  doi
openurl 
  Title Gaussian quantum metrology for mode-encoded parameters Type Journal Article
  Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 26 Issue 7 Pages 073022 - 23pp  
  Keywords quantum metrology; multimode quantum optics; Gaussian states  
  Abstract Quantum optical metrology aims to identify ultimate sensitivity bounds for the estimation of parameters encoded into quantum states of the electromagnetic field. In many practical applications, including imaging, microscopy, and remote sensing, the parameter of interest is not only encoded in the quantum state of the field, but also in its spatio-temporal distribution, i.e. in its mode structure. In this mode-encoded parameter estimation setting, we derive an analytical expression for the quantum Fisher information valid for arbitrary multimode Gaussian fields. To illustrate the power of our approach, we apply our results to the estimation of the transverse displacement of a beam and to the temporal separation between two pulses. For these examples, we show how the estimation sensitivity can be enhanced by adding squeezing into specific modes.  
  Address [Sorelli, Giacomo; Treps, Nicolas; Walschaers, Mattia] Sorbonne Univ, ENS Univ PSL, CNRS, Lab Kastler Brossel,Coll France, 4 Pl Jussieu, F-75252 Paris, France, Email: giacomo.sorelli@iosb-extern.fraunhofer.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001270966100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6209  
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C. url  doi
openurl 
  Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 075003 - 29pp  
  Keywords  
  Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.  
  Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224349300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6129  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
  Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 11 Issue 1 Pages 2 - 17pp  
  Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization  
  Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.  
  Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001171512700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5975  
Permanent link to this record
 

 
Author Black, K.M. et al; Zurita, J. url  doi
openurl 
  Title Muon Collider Forum report Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages T02015 - 95pp  
  Keywords Accelerator Applications; Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings- high energy (linear accelerators, synchrotrons); Large detector systems for particle and astroparticle physics  
  Abstract A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report.  
  Address [Black, K. M.; Bose, T.; Dasu, S.; Everaerts, P.; Jia, H.; Lomte, S.; Pinna, D.; Venkatasubramanian, N.; Vuosalo, C.] Univ Wisconsin Madison, Madison, WI USA, Email: sergo@fnal.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185309300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6048  
Permanent link to this record
 

 
Author Barral, D.; Isoard, M.; Sorelli, G.; Gessner, M.; Treps, N.; Walschaers, M. url  doi
openurl 
  Title Metrological detection of entanglement generated by non-Gaussian operations Type Journal Article
  Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 26 Issue 8 Pages 083012 - 20pp  
  Keywords entanglement; Fisher information; non-Gaussian; continuous variables; metrology; homodyne detection  
  Abstract Entanglement and non-Gaussianity are physical resources that are essential for a large number of quantum-optics protocols. Non-Gaussian entanglement is indispensable for quantum-computing advantage and outperforms its Gaussian counterparts in a number of quantum-information protocols. The characterization of non-Gaussian entanglement is a critical matter as it is in general highly demanding in terms of resources. We propose a simple protocol based on the Fisher information for witnessing entanglement in an important class of non-Gaussian entangled states: photon-subtracted states. We demonstrate that our protocol is relevant for the detection of non-Gaussian entanglement generated by multiple photon-subtraction and that it is experimentally feasible through homodyne detection.  
  Address [Barral, David; Isoard, Mathieu; Sorelli, Giacomo; Treps, Nicolas; Walschaers, Mattia] Sorbonne Univ, ENS Univ PSL, CNRS, Lab Kastler Brossel,Coll France, 4 Pl Jussieu, F-75252 Paris, France, Email: david.barral@lkb.ens.fr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001288948500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6228  
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Miro, C.; Nebot, M. url  doi
openurl 
  Title New physics hints from τ scalar interactions and (g-2)e,μ Type Journal Article
  Year 2024 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 51 Issue 2 Pages 025001 - 20pp  
  Keywords lepton sector; extended scalar sector; new physics signals  
  Abstract We consider a flavour conserving two Higgs doublet model that consists of a type I (or X) quark sector and a generalized lepton sector where the Yukawa couplings of the charged leptons to the new scalars are not proportional to the lepton masses. The model, previously proposed to solve both muon and electron g – 2 anomalies simultaneously, is also capable to accommodate the ATLAS excess in pp -> S -> tau(+)tau(-) with gluon-gluon fusion production in the invariant mass range [0.2; 0.6] TeV, including all relevant low and high energy constraints. The excess is reproduced taking into account the new contributions from the scalar H, the pseudoscalar A, or both. In particular, detailed numerical analyses favoured the solution with a significant hierarchy among the vevs of the two Higgs doublets, t(beta)similar to 10, and light neutral scalars satisfying m(A) > m(H) with sizable couplings to tau leptons. In this region of the parameter space, the muon g – 2 anomaly receives one and two-loop (Barr Zee) contributions of similar size, while the electron anomaly is explained at two loops. An analogous ATLAS excess in b-associated production and the CMS excess in ditop production are also studied. Further New Physics prospects concerning the anomalous magnetic moment of the tau lepton and the implications of the CDF M-W measurement on the final results are discussed.  
  Address [Botella, Francisco J.; Miro, Carlos; Nebot, Miguel] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001132956900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5877  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva