|   | 
Details
   web
Records
Author Ureña, J.; Sojo, A.; Bermejo-Vega, J.; Manzano, D.
Title Entanglement detection with classical deep neural networks Type Journal Article
Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 14 Issue 1 Pages 18109 - 11pp
Keywords
Abstract In this study, we introduce an autonomous method for addressing the detection and classification of quantum entanglement, a core element of quantum mechanics that has yet to be fully understood. We employ a multi-layer perceptron to effectively identify entanglement in both two- and three-qubit systems. Our technique yields impressive detection results, achieving nearly perfect accuracy for two-qubit systems and over 90% accuracy for three-qubit systems. Additionally, our approach successfully categorizes three-qubit entangled states into distinct groups with a success rate of up to 77%. These findings indicate the potential for our method to be applied to larger systems, paving the way for advancements in quantum information processing applications.
Address [Urena, Julio] CSIC, Inst Fis Corpuscular IF, Valencia 46980, Spain, Email: manzano@onsager.ugr.es
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:001284942100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial (down) 6230
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D.
Title Neutrino masses from new seesaw models: low-scale variants and phenomenological implications Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 8 Pages 803 - 19pp
Keywords
Abstract With just the Standard Model Higgs doublet, there are only three types of seesaw models that generate light Majorana neutrino masses at tree level after electroweak spontaneous symmetry breaking. However, if there exist additional TeV scalars acquiring vacuum expectation values, coupled with heavier fermionic multiplets, several new seesaw models become possible. These new seesaws are the primary focus of this study and correspond to the tree-level ultraviolet completions of the effective operators studied in a companion publication. We are interested in the genuine cases, in which the standard seesaw contributions are absent. In addition to the tree-level generation of neutrino masses, we also consider the one-loop contributions. Furthermore, we construct low-energy versions that exhibit a very rich phenomenology. Specifically, we scrutinise the generation of dimension-6 operators and explore their implications, including non-unitarity of the leptonic mixing matrix, non-universal Z-boson interactions, and lepton flavor violation. Finally, we provide (Generalised) Scotogenic-like variants that incorporate viable dark matter candidates.
Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: simone.marciano@uniroma3.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001289661800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 6229
Permanent link to this record
 

 
Author Barral, D.; Isoard, M.; Sorelli, G.; Gessner, M.; Treps, N.; Walschaers, M.
Title Metrological detection of entanglement generated by non-Gaussian operations Type Journal Article
Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 26 Issue 8 Pages 083012 - 20pp
Keywords entanglement; Fisher information; non-Gaussian; continuous variables; metrology; homodyne detection
Abstract Entanglement and non-Gaussianity are physical resources that are essential for a large number of quantum-optics protocols. Non-Gaussian entanglement is indispensable for quantum-computing advantage and outperforms its Gaussian counterparts in a number of quantum-information protocols. The characterization of non-Gaussian entanglement is a critical matter as it is in general highly demanding in terms of resources. We propose a simple protocol based on the Fisher information for witnessing entanglement in an important class of non-Gaussian entangled states: photon-subtracted states. We demonstrate that our protocol is relevant for the detection of non-Gaussian entanglement generated by multiple photon-subtraction and that it is experimentally feasible through homodyne detection.
Address [Barral, David; Isoard, Mathieu; Sorelli, Giacomo; Treps, Nicolas; Walschaers, Mattia] Sorbonne Univ, ENS Univ PSL, CNRS, Lab Kastler Brossel,Coll France, 4 Pl Jussieu, F-75252 Paris, France, Email: david.barral@lkb.ens.fr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001288948500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 6228
Permanent link to this record
 

 
Author Mantovani Sarti, V.; Feijoo, A.; Vidana, I.; Ramos, A.; Giacosa, F.; Hyodo, T.; Kamiya, Y.
Title Constraining the low-energy S =-2 meson-baryon interaction with two-particle correlations Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 110 Issue 1 Pages L011505 - 8pp
Keywords
Abstract In this paper we present a novel method to extract information on hadron-hadron interactions using for the first time femtoscopic data to constrain the low-energy constants of a QCD effective Lagrangian. This method offers a new way to investigate the nonperturbative regime of QCD in sectors where scattering experiments are not feasible, such as the multistrange and charm ones. As an example of its application, we use the very precise K-Lambda correlation function data, recently measured in pp collisions at LHC, to constrain the strangeness S = -2 meson-baryon interaction. The model obtained delivers new insights on the molecular nature of the Xi(1620) and Xi(1690) states.
Address [Sarti, V. Mantovani] Tech Univ Munich, Phys Dept E62, Garching, Germany, Email: valentina.mantovani-sarti@tum.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001285579200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 6227
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Jusufi, K.; Cuadros-Melgar, B.; Leon, G.
Title Dark matter signatures of black holes with Yukawa potential Type Journal Article
Year 2024 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 44 Issue Pages 101500 - 20pp
Keywords Quantum-corrected Yukawa-like gravitational potential; Dark matter; Quasinormal frequencies; Black Holes shadows
Abstract This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
Address [Filhoa, A. A. Araujo] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001287415400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial (down) 6226
Permanent link to this record