|   | 
Details
   web
Records
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S.
Title Cosmological bound on the QCD axion mass, redux Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue (down) 9 Pages 022 - 35pp
Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology
Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.
Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000863296000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5383
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Mena, O.
Title Impact of the damping tail on neutrino mass constraints Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue (down) 8 Pages 083509 - 11pp
Keywords
Abstract Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.
Address [Di Valentino, Eleonora; Giare, William] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001157784100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5935
Permanent link to this record
 

 
Author Zhai, Y.J.; Giare, W.; van de Bruck, C.; Di Valentino, E.; Mena, O.; Nunes, R.C.
Title A consistent view of interacting dark energy from multiple CMB probes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue (down) 7 Pages 032 - 16pp
Keywords cosmological parameters from CMBR; dark energy theory
Abstract We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.
Address [Zhai, Yuejia; Giare, William; van de Bruck, Carsten; Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: yzhai13@sheffield.ac.uk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001066525900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5673
Permanent link to this record
 

 
Author Forconi, M.; Giare, W.; Mena, O.; Ruchika; Di Valentino, E.; Melchiorri, A.; Nunes, R.C.
Title A double take on early and interacting dark energy from JWST Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue (down) 5 Pages 097 - 37pp
Keywords high redshift galaxies; dark energy theory; physics of the early universe
Abstract The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
Address [Forconi, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001259284100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6179
Permanent link to this record
 

 
Author Giare, W.; Di Valentino, E.; Melchiorri, A.; Mena, O.
Title New cosmological bounds on hot relics: axions and neutrinos Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 505 Issue (down) 2 Pages 2703-2711
Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations
Abstract Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000672803400085 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4912
Permanent link to this record