toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vijande, J.; Valcarce, A.; Carames, T.F.; Garcilazo, H. url  doi
openurl 
  Title Heavy Hadron Spectroscopy: A Quark Model Perspective Type Journal Article
  Year 2013 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 22 Issue 5 Pages (down) 1330011 - 25pp  
  Keywords Heavy hadrons; constituent quark model; many-quark systems  
  Abstract We present recent results of hadron spectroscopy and hadron hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher-order hock space components in the hadron spectra and the connection of this extension with the hadron-hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about the low-energy realization of the theory.  
  Address Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319839500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1470  
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Barbero, J.F.; Navarro-Salas, J. url  doi
openurl 
  Title Prime Numbers, Quantum Field Theory and the Goldbach Conjecture Type Journal Article
  Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 27 Issue 23 Pages (down) 1250136 - 24pp  
  Keywords Quantum field theory; number theory; renormalization; Goldbach conjecture  
  Abstract Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators b(p)(dagger) – labeled by prime numbers p – acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.  
  Address [Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308945100007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1173  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Developing the Framed Standard Model Type Journal Article
  Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 27 Issue 17 Pages (down) 1250087 - 45pp  
  Keywords Quantum field theory; CP violation; mixing and fermion masses  
  Abstract The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.  
  Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305621900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1061  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
  Year 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 21 Issue 8 Pages (down) 1250067 - 6pp  
  Keywords Extended theories of gravity; Palatini formalism; Planck scale  
  Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308497500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1154  
Permanent link to this record
 

 
Author Oset, E.; Ramos, A.; Garzon, E.J.; Molina, R.; Tolos, L.; Xiao, C.W.; Wu, J.J.; Zou, B.S. url  doi
openurl 
  Title Interaction of vector mesons with baryons and nuclei Type Journal Article
  Year 2012 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 21 Issue 11 Pages (down) 1230011 - 18pp  
  Keywords Vector-baryon interaction; vectors in medium; J/psi suppression in nuclei  
  Abstract After some short introductory remarks on particular issues on the vector mesons in nuclei, in this paper, we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei from a modern perspective using the local hidden gauge formalism for the interaction of vector mesons. We present results for the vector-baryon interaction and in particular for the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons, taking also the mixing of these states with pseudoscalars and baryons into account. We then venture into the charm sector, reporting on hidden charm baryon states around 4400 MeV, generated from the interaction of vector mesons and baryons with charm, which have a strong repercussion on the properties of the J/Psi N interaction. We also address the interaction of K* with nuclei and make suggestions to measure the predicted huge width in the medium by means of transparency ratio. The formalism is extended to study the phenomenon of J/psi suppression in nuclei via J/psi photo-production reactions.  
  Address [Oset, E.; Garzon, E. J.; Xiao, C. W.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: oset@ific.uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310855800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1204  
Permanent link to this record
 

 
Author Morfin, J.G.; Nieves, J.; Sobczyk, J.T. url  doi
openurl 
  Title Recent Developments in Neutrino/Antineutrino-Nucleus Interactions Type Journal Article
  Year 2012 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2012 Issue Pages (down) 934597 - 35pp  
  Keywords  
  Abstract Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1-10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.  
  Address [Morfin, Jorge G.; Sobczyk, Jan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: morfin@fnal.gov  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313175200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1302  
Permanent link to this record
 

 
Author NEXT Collaboration (Gomez-Cadenas, J.J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Present Status and Future Perspectives of the NEXT Experiment Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages (down) 907067 - 22pp  
  Keywords  
  Abstract NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the Xe-136 isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.  
  Address [Gomez Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333620700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1745  
Permanent link to this record
 

 
Author Bonilla, J. et al; Vos, M. url  doi
openurl 
  Title Jets and Jet Substructure at Future Colliders Type Journal Article
  Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 10 Issue Pages (down) 897719 - 17pp  
  Keywords jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson  
  Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.  
  Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000822618100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5464  
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Valle, J.W.F. url  doi
openurl 
  Title The Low-Scale Approach to Neutrino Masses Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages (down) 831598 - 15pp  
  Keywords  
  Abstract In this short review we revisit the broad landscape of low-scale SU(3)(C) circle times SU(2)(L) circle times U(1)(Y) models of neutrino mass generation, with view on their phenomenological potential. This includes signatures associated to direct neutrino mass messenger production at the LHC, as well as messenger-induced lepton flavor violation processes. We also briefly comment on the presence of WIMP cold dark matter candidates.  
  Address [Boucenna, Sofiane M.; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular Parque Cient IFIC, AHEP Grp, Valencia 46980, Spain, Email: stefano.morisi@gmail.com  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340751800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1897  
Permanent link to this record
 

 
Author Barenboim, G. doi  openurl
  Title Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos Type Journal Article
  Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 10 Issue Pages (down) 813753 - 7pp  
  Keywords CPT symmetry; neutrino properties; lorentz violation; fundamental symmetries; discrete symmetries  
  Abstract The CPT symmetry, which combines Charge Conjugation, Parity, and Time Reversal, is a cornerstone of our model-building method, and its probable violation will endanger the most extended tool we presently utilize to explain physics, namely local relativistic quantum fields. However, the kaon system's conservation constraints appear to be rather severe. We will show in this paper that neutrino oscillation experiments can enhance this limit by many orders of magnitude, making them an excellent instrument for investigating the basis of our understanding of Nature. As a result, verifying CPT invariance does not evaluate a specific model, but rather the entire paradigm. Therefore, as the CPT's status in the neutrino sector, linked or not to Lorentz invariance violation, will be assessed at an unprecedented level by current and future long baseline experiments, distinguishing it from comparable experimental fingerprints coming from non-standard interactions is critical. Whether the entire paradigm or simply the conventional model of neutrinos is at jeopardy is significantly dependent on this.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, Burjassot, Spain, Email: gabriela.barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804003600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva