|   | 
Details
   web
Records
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 5 Pages 051 - 30pp
Keywords dark matter theory; ultra high energy photons and neutrinos
Abstract (up) In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data alone. Finally, we also consider the possibility of a signal from dark matter annihilations and perform analogous analyses to the case of decays, commenting on its implications.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000469808500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4038
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Warm dark matter and the ionization history of the Universe Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 10 Pages 103539 - 14pp
Keywords
Abstract (up) In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization efficiency or the minimum mass for which halos can host star-forming galaxies. Here we use different data sets regarding the ionization and thermal histories of the Universe and, taking into account the degeneracies from several astrophysical parameters, we obtain a lower bound on the mass of thermal warm dark matter candidates of m(X) > 1.3 keV, or m(s) > 5.5 keV for the case of sterile neutrinos nonresonantly produced in the early Universe, both at 90% confidence level.
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Bld Triomphe, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000416238500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3390
Permanent link to this record
 

 
Author Salvado, J.; Mena, O.; Palomares-Ruiz, S.; Rius, N.
Title Non-standard interactions with high-energy atmospheric neutrinos at IceCube Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 141 - 30pp
Keywords Neutrino Physics; Solar and Atmospheric Neutrinos
Abstract (up) Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μtau-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal epsilon(mu tau), with the 90% credible interval given by -6.0 x 10(-3) < epsilon(mu tau) < 5.4 x 10(-3), comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of epsilon(mu tau) near its current bound.
Address [Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Aparlado Correos 22085, E-46071 Valencia, Spain, Email: jsalvado@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000397645900004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3034
Permanent link to this record
 

 
Author Hajjar, R.; Palomares-Ruiz, S.; Mena, O.
Title Shedding light on the Δm21^2 tension with supernova neutrinos Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 854 Issue Pages 138719 - 8pp
Keywords
Abstract (up) One long-standing tension in the determination of neutrino parameters is the mismatched value of the solar mass square difference, Delta m(21)(2), measured by different experiments: the reactor antineutrino experiment KamLAND finds a best fit larger than the one obtained with solar neutrino data. Even if the current tension is mild (similar to 1.5 sigma.), it is timely to explore if independent measurements could help in either closing or reassessing this issue. In this regard, we explore how a future supernova burst in our galaxy could be used to determine Delta m(21)(2) at the future Hyper-Kamiokande detector, and how this could contribute to the current situation. We study Earth matter effects for different models of supernova neutrino spectra and supernova orientations. We find that, if supernova neutrino data prefers the KamLAND best fit for Delta m(21)(2), an uncertainty similar to the current KamLAND one could be achieved. On the contrary, if it prefers the solar neutrino data best fit, the current tension with KamLAND results could grow to a significance larger than 5 sigma. Furthermore, supernova neutrinos could significantly contribute to reducing the uncertainty on sin (2)theta(12).
Address [Hajjar, Rasmi; Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV, C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: rasmi.hajjar@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001246913500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6159
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 068 - 38pp
Keywords neutrino detectors; primordial black holes
Abstract (up) Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000882783900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5412
Permanent link to this record